最全总结递推数列求通项公式的常用方法_第1页
最全总结递推数列求通项公式的常用方法_第2页
最全总结递推数列求通项公式的常用方法_第3页
最全总结递推数列求通项公式的常用方法_第4页
最全总结递推数列求通项公式的常用方法_第5页
已阅读5页,还剩4页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

递推数列求通项公式的常用方法公式法例1、已知无穷数列的前项和为,并且,求的通项公式?【解析】:,,,又,.反思:利用相关数列与的关系:,与提设条件,建立递推关系,是本题求解的关键.归纳猜想法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例2、已知数列中,,,求数列的通项公式.【解析】:,,,猜测,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.三、累加法:利用求通项公式的方法称为累加法。累加法是求型如的递推数列通项公式的基本方法(可求前项和).例3、已知无穷数列的的通项公式是,若数列满足,,求数列的通项公式.【解析】:,,=1++...+=.反思:用累加法求通项公式的关键是将递推公式变形为。四、累乘法:利用恒等式求通项公式的方法称为累乘法,累乘法是求型如:的递推数列通项公式的基本方法(数列可求前项积)。例4、已知,,求数列通项公式.【解析】:,,又有=1×=,当时,满足,.反思:用累乘法求通项公式的关键是将递推公式变形为.五、构造新数列(待定系数法):将递推公式(为常数,,)通过与原递推公式恒等变成的方法叫构造新数列,也即是待定系数法。例5、已知数列中,,,求的通项公式.【解析】:利用,求得,是首项为,公比为2的等比数列,即,反思:构造新数列的实质是通过来构造一个我们所熟知的等差或等比数列.六、倒数变换:将递推数列,取倒数变成的形式的方法叫倒数变换。然后就转变为第五种情况,此时将数列看成一个新的数列,即再利用“构造新数列”的方法求解。例6、已知数列中,,,求数列的通项公式.【解析】:将取倒数得:,,是以为首项,公差为2的等差数列.,.反思:倒数变换有两个要点需要注意:一是取倒数.二是一定要注意新数列的首项,公差或公比变化了。七、特征根法:形如递推公式为(其中p,q均为常数)。对于由递推公式,有给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例7:数列满足,,求【解析】:由题可知数列的特征方程是:。,。又由,于是故反思:本题解题的关键是先求出特征方程的根。再由初始值确定出A,B的用已知量a,b表示的值,从而可得数列的通项公式。八、不动点法若A,B且AD-BC,解,设为其两根=1\*ROMANI、若,数列是等比数列;=2\*ROMANII、若,数列是等差数列。例8、已知数列满足,求数列的通项公式。【解析】:令,得,则x=1是函数的不动点。因为所以,所以数列是以为首项,以为公差的等差数列,则,故。反思:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。变式:设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,…(Ⅰ)求a1,a2;(Ⅱ){an}的通项公式九、换元法即是将一复杂的整体用一个新的符号来表示,从而使递推数列看起来更简单,更易找到解决的方法。例9、已知数列满足,求数列的通项公式。【解析】:令,则故代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则+3,即,得。反思:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。十、取对数法:形如这种类型一般是等式两边取对数后转化为,再利用构造新数列(待定系数法)求解。例10:已知数列{}中,,求数列。【解析】:由两边取对数得,令,则,再利用构造新数列(待定系数法)解得:。十一、周期型:由已知递推式计算出前几项,寻找周期。此题型一般是在不能运用以上各种方法的情况下可考虑到这种方法,具有一定的探索性,虽然比较简单,但也是一种很重要的数学思想,需要好好掌握。例11:若数列满足,若,则的值为___________。反思:此题的关键在于观察递推数列的形式,取一些特定的n的值,求出数列的前几项的值,从而找到其周期,这样问题就迎刃而解了。变式:已知数列满足,则= ()十二、双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例:已知数列中,;数列中,。当时,,,求,.高考递推数列题型分类归纳解析类型1解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例1.已知数列满足,,求。变式:已知数列,且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(II)求{an}的通项公式.类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例1:已知数列满足,,求。例2:已知,,求。变式:(2004,全国I,理15.)已知数列{an},满足a1=1,(n≥2),则{an}的通项类型3(其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。例:已知数列中,,,求.变式:(2006,重庆,文,14)在数列中,若,则该数列的通项_______________变式:(2006.福建.理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列{bn}滿足证明:数列{bn}是等差数列;(Ⅲ)证明:类型4(其中p,q均为常数,)。(或,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系数法解决。例:已知数列中,,,求。变式:(2006,全国I,理22,本小题满分12分)设数列的前项的和,(Ⅰ)求首项与通项;(Ⅱ)设,,证明:类型5递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。解法一(待定系数——迭加法):数列:,,求数列的通项公式。例:已知数列中,,,,求。变式:1.已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列2.已知数列中,,,,求3.已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前项和。类型6递推公式为与的关系式。(或)解法:这种类型一般利用与消去或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.(2)应用类型4((其中p,q均为常数,))的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以变式:(2006,陕西,理,20本小题满分12分)已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an变式:(2005,江西,文,22.本小题满分14分)已知数列{an}的前n项和Sn满足Sn-Sn-2=3求数列{an}的通项公式.类型7解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例:设数列:,求.变式:(2006,山东,文,22,本小题满分14分)已知数列{}中,在直线y=x上,其中n=1,2,3…(Ⅰ)令(Ⅱ)求数列(Ⅲ)设的前n项和,是否存在实数,使得数列为等差数列?若存在试求出不存在,则说明理由.类型8解法:这种类型一般是等式两边取对数后转化为,再利用待定系数法求解。例:已知数列{}中,,求数列变式:(2005,江西,理,21.本小题满分12分)已知数列(1)证明(2)求数列的通项公式an.变式:(2006,山东,理,22,本小题满分14分)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,…证明数列{lg(1+an)}是等比数列;设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;记bn=,求{bn}数列的前项和Sn,并证明Sn+=1类型9解法:这种类型一般是等式两边取倒数后换元转化为。例:已知数列{an}满足:,求数列{an}的通项公式。变式:(2006,江西,理,22,本大题满分14分)1.已知数列{an}满足:a1=,且an=求数列{an}的通项公式;证明:对于一切正整数n,不等式a1a2……an2n!2、若数列的递推公式为,则求这个数列的通项公式。3、已知数列{}满足时,,求通项公式。4、已知数列{an}满足:,求数列{an}的通项公式。5、若数列{a}中,a=1,a=n∈N,求通项a.类型10解法:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征方程有两个相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论