版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FoundationsofMachineLearning
ClusteringBasics(聚类基础)2023/11/4ClusteringLesson8-1ClusteringBasicsDefinitionandMotivation(定义与动机)DataPreprocessingandSimilarityComputationObjectiveofClusteringClusteringEvaluation
2023/11/4ClusteringLesson8-2ClusteringBasicsDefinitionandMotivationFindinggroupsofobjectssuchthattheobjectsinagroupwillbesimilar(orrelated)tooneanotheranddifferentfrom(orunrelatedto)theobjectsinothergroups.2023/11/4ClusteringLesson8-3ClusteringBasicsDefinitionandMotivation
Astand-alonetool:exploredatadistributionApreprocessingstepforotheralgorithmsPatternrecognition,spatialdataanalysis,imageprocessing,marketresearch,WWW,…ClusterdocumentsClusterweblogdatatodiscovergroupsofsimilaraccesspatternsClusteringCo-expressedGenesMarketing:Helpmarketersdiscoverdistinctgroupsintheircustomerbases,andthenusethisknowledgetodeveloptargetedmarketingprogramsClimate:understandingearthclimate,findpatternsofatmosphericandocean
2023/11/4ClusteringLesson8-4ClusteringBasicsDefinitionandMotivationAstand-alonetool:exploredatadistributionApreprocessingstepforotheralgorithmsPatternrecognition,spatialdataanalysis,imageprocessing,marketresearch,WWW,…TwoImportantAspectsPropertiesofinputdataDefinethesimilarityordissimilaritybetweenpointsRequirementofclusteringDefinetheobjectiveandmethodology
2023/11/4ClusteringLesson8-5ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputation(数据预处理和相似性计算)
ObjectiveofClusteringClusteringEvaluation
2023/11/4ClusteringLesson8-6DataPreprocessingandSimilarityComputationData:CollectionofdataobjectsandtheirattributesAnattributeisapropertyorcharacteristicofanobjectExamples:eyecolorofaperson,temperature,etc.Attributeisalsoknownasdimension,variable,field,characteristic,orfeatureAcollectionofattributesdescribeanobjectObjectisalsoknownasrecord,point,case,sample,entity,orinstance2023/11/4ClusteringLesson8-7DataPreprocessingandSimilarityComputationDataMatrix(数据矩阵)Representsnobjectswithpvariables
2023/11/4ClusteringLesson8-8DataPreprocessingandSimilarityComputationSimilarityandDissimilaritySimilarityNumericalmeasureofhowaliketwodataobjectsareIshigherwhenobjectsaremorealikeOftenfallsintherange[0,1]DissimilarityNumericalmeasureofhowdifferentaretwodataobjectsLowerwhenobjectsaremorealikeMinimumdissimilarityisoften0Upperlimitvaries2023/11/4ClusteringLesson8-9DataPreprocessingandSimilarityComputationDistanceMatrix(距离矩阵)Representspairwisedistanceinnobjects
Annbynmatrixd(i,j):
distanceordissimilaritybetweenobjectsiandjNonnegativeCloseto0:similar
2023/11/4ClusteringLesson8-10DataPreprocessingandSimilarityComputationDataMatrix->DistanceMatrix2023/11/4ClusteringLesson8-11DataPreprocessingandSimilarityComputationTypesofAttributes(属性的类型)Discrete(离散)HasonlyafiniteorcountablyinfinitesetofvaluesExamples:zipcodes,counts,orthesetofwordsinacollectionofdocumentsNote:binaryattributesareaspecialcaseofdiscreteattributesOrdinal(定序)HasonlyafiniteorcountablyinfinitesetofvaluesOrderofvaluesisimportantExamples:rankings(e.g.,painlevel1-10),grades(A,B,C,D)Continuous(连续)HasrealnumbersasattributevaluesExamples:temperature,height,orweightContinuousattributesaretypicallyrepresentedasfloating-pointvariables2023/11/4ClusteringLesson8-12DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributes
2023/11/4ClusteringLesson8-13DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMinkowskidistance:ageneralizationIfq=2,disEuclideandistanceIfq=1,disManhattandistance2023/11/4ClusteringLesson8-14DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributes
MinkowskiDistance—ContinuousAttributeStandardizationCalculatethemeanabsolutedeviationCalculatethestandardizedmeasurement(z-score)2023/11/4ClusteringLesson8-15DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeStandardizationMahalanobisDistance
Adissimilaritymeasurebetweentwo
randomvectorsxandyofthesame
distributionwiththe
covariancematrix
S.2023/11/4ClusteringLesson8-16DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeStandardizationMahalanobisDistanceCommonPropertiesofaDistanceDistances,suchastheEuclideandistance,havesomewellknownproperties1.d(p,q)>=0forallpandqandd(p,q)=0onlyifp=q.(Positivedefiniteness)2.d(p,q)=d(q,p)forallpandq.(Symmetry)3.d(p,r)<=d(p,q)+d(q,r)forallpointsp,q,andr.(TriangleInequality)2023/11/4ClusteringLesson8-17DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesComputesimilaritiesusingthefollowingquantitiesM01=thenumberofattributeswherepwas0andqwas1M10=thenumberofattributeswherepwas1andqwas0M00=thenumberofattributeswherepwas0andqwas0M11=thenumberofattributeswherepwas1andqwas1SimpleMatchingandJaccardCoefficients2023/11/4ClusteringLesson8-18DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesCommonPropertiesofaSimilaritys(p,q)=1(ormaximumsimilarity)onlyifp=q.s(p,q)=s(q,p)forallpandq.(Symmetry)wheres(p,q)is
thesimilaritybetweenpoints(dataobjects),pandq.2023/11/4ClusteringLesson8-19DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesCommonPropertiesofaSimilarityCharacteristicsoftheInputDataAreImportantSparseness,Attributetype,TypeofData,Dimensionality,NoiseandOutliers,TypeofDistribution=>Conductpreprocessingandselecttheappropriatedissimilarityorsimilaritymeasure=>Determinetheobjectiveofclusteringandchoosetheappropriatemethod2023/11/4ClusteringLesson8-20ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputationObjectiveofClustering(聚类目标)ClusteringEvaluation2023/11/4ClusteringLesson8-21ObjectiveofClusteringConsiderationsforClusterAnalysisPartitioningcriteriaSinglelevelvs.hierarchicalpartitioning(often,multi-levelhierarchicalpartitioningisdesirable)SeparationofclustersExclusive(e.g.,onecustomerbelongstoonlyoneregion)vs.overlapping(e.g.,onedocumentmaybelongtomorethanonetopic)HardversusfuzzyInfuzzyclustering,apointbelongstoeveryclusterwithsomeweightbetween0and1Weightsmustsumto1Probabilisticclusteringhassimilarcharacteristics
2023/11/4ClusteringLesson8-22ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringScalabilityAbilitytodealwithdifferenttypesofattributesMinimalrequirementsfordomainknowledgetodetermineinputparametersAbletodealwithnoiseandoutliersDiscoveryofclusterswitharbitraryshapeInsensitivetoorderofinputrecordsHighdimensionalityIncorporationofuser-specifiedconstraintsInterpretabilityandusability
2023/11/4ClusteringLesson8-23ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguous
2023/11/4ClusteringLesson8-24ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguousTypesofClustersCenter-based
Aclusterisasetofobjectssuchthatanobjectinaclusteriscloser(moresimilar)tothe“center”ofacluster,thantothecenterofanyotherclusterThecenterofaclusterisoftenacentroid,theaverageofallthepointsinthecluster,oramedoid,themost“representative”pointofacluster2023/11/4ClusteringLesson8-25ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguousTypesofClustersCenter-based
Density-basedAclusterisadenseregionofpoints,whichisseparatedbylow-densityregions,fromotherregionsofhighdensity.Usedwhentheclustersareirregularorintertwined,andwhennoiseandoutliersarepresent.2023/11/4ClusteringLesson8-26ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputationObjectiveofClusteringClusteringEvaluation(聚类评价)2023/11/4ClusteringLesson8-27ClusteringEvaluationClustervalidationQuality:“goodness”ofclustersAssessthequalityandreliabilityofclusteringresultsWhyvalidation?ToavoidfindingclustersformedbychanceTocompareclusteringalgorithmsTochooseclusteringparameterse.g.,thenumberofclusters2023/11/4ClusteringLesson8-28ClusteringEvaluationAspectsofClusterValidation
Comparingtheclusteringresultstogroundtruth(externallyknownresults)–ExternalIndex(外部指标)Evaluatingthequalityofclusterswithoutreferencetoexternalinformation–Useonlythedata–InternalIndex(内部指标)Determiningthereliabilityofclusters–Towhatconfidencelevel,theclustersarenotformedbychance–Statisticalframework2023/11/4ClusteringLesson8-29ClusteringEvaluationComparingtoGroundTruth(与真值比较)NotationN:numberofobjectsinthedatasetP={P1,…,Ps}:thesetof“groundtruth”clustersC={C1,…,Ct}:thesetofclustersreportedbyaclusteringalgorithmThe“incidencematrix”(关联矩阵)NbyN(bothrowsandcolumnscorrespondtoobjects)Pij=1
ifOiandOjbelongtothesame“groundtruth”clusterinP;Pij=0otherwise
Cij=1ifOiandOjbelongtothesameclusterinC;Cij=0otherwise2023/11/4ClusteringLesson8-30ClusteringEvaluationComparingtoGroundTruthNotationThe“incidencematrix”(关联矩阵)RandIndexandJaccardCoefficientApairofdataobject(Oi,Oj)fallsintooneofthefollowingcategoriesSS:Cij=1andPij=1;(agree)DD:Cij=0andPij=0;(agree)SD:Cij=1andPij=0;(disagree)DS:Cij=0andPij=1;(disagree)2023/11/4ClusteringLesson8-31ClusteringEvaluationComparingtoGroundTruthNotationThe“incidencematrix”(关联矩阵)RandIndexandJaccardCoefficientEntropyandPuritythenumberofobjectsinboththek-thclusteroftheclusteringsolutionandj-thclusterofthegroundtruththenumberofobjectsinthek-thclusteroftheclusteringsolutionthenumberofobjectsinthej-thclusterofthegroundtruth2023/11/4ClusteringLesson8-32ClusteringEvaluationComparingtoGroundTruthInternalIndex(内部指标)UseonlythedatatomeasureclusterqualityMeasurethe“cohesion”and“separation”ofclustersCalculatethecorrelationbetweenclusteringresultsanddistancematrix2023/11/4ClusteringLesson8-33ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationCohesionismeasuredbythewithinclustersumofsquaresSeparationismeasuredbythebetweenclustersumofsquares2023/11/4ClusteringLesson8-34ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationCohesionismeasuredbythewithinclustersumofsquaresSeparationismeasuredbythebetweenclustersumofsquaresBSS+WSS=constantWSS(Cohesion)measureiscalledSumofSquaredError(SSE)—acommonlyusedmeasureAlargernumberofclusterstendtoresultinsmallerSSE2023/11/4ClusteringLesson8-35ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationSilhouetteCoefficient(轮廓系数)SilhouetteCoefficientcombinesideasofbothcohesionandseparation.Foranindividualpoint,iCalculatea=averagedistanceofitothepointsinitsclusterCalculateb=min(averagedistanceofitopointsinanothercluster)Thesilhouettecoefficientforapointisthengivenbys=1–a/bifa<b,(s=b/a-1ifa>b,nottheusualcase)Typicallybetween0and1Thecloserto1thebetterCancalculatetheAverageSilhouettewidthforaclusteroraclustering2023/11/4ClusteringLesson8-36ClusteringEvaluationComparingtoGroundTruthInternalIndex(内部指标)CohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixDistanceMatrixDijisthesimilaritybetweenobjectOiandOjIncidenceMatrixCij=1ifOiandOjbelongtothesamecluster,Cij=0otherwise
ComputethecorrelationbetweenthetwomatricesOnlyn(n-1)/2entriesneedstobecalculatedHighcorrelationindicatesgoodclustering2023/11/4ClusteringLesson8-37ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixGivenDistanceMatrixD={d11,d12,…,dnn}andIncidenceMatrixC={c11,c12,…,cnn}.CorrelationrbetweenDandCisgivenby2023/11/4ClusteringLesson8-38ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixUsingSimilarityMatrixforClusterValidation
Orderthesimilaritymatrixwithrespecttoclusterlabelsandinspectvisually.2023/11/4ClusteringLesson8-39ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabilityofClustersNeedaframeworktointerpretanymeasure–Forexample,ifourmeasureofevaluationhasthevalue,10,isthatgood,fair,orpoor?StatisticsprovideaframeworkforclustervalidityThemore“atypical”aclusteringresultis,themorelikelyitrepresentsvalidstructureinthedata
2023/11/4ClusteringLesson8-40ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabilityofClustersStatisticalFrameworkforSSEExampleCompareSSEof0.005againstthreeclustersinrandomdataSSEHistogramof500setsofrandomdatapointsofsize100—lowestSSEis0.01732023/11/4ClusteringLesson8-41ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园小班音乐主题教案三合辑(2025-2026学年)
- 癌症患者康复生活指导手册
- 完整版儿科合理用药教案(2025-2026学年)
- 三年级下册数学教案除法和加减法的两步混合运算不含小括号丨苏教版(2025-2026学年)
- UNITTOPICSECTIOND重庆市彭水第三中学仁爱版八年级下册教案(2025-2026学年)
- 纪昌学射人教版四年级第八册教案(2025-2026学年)
- 幼儿园大班教案数字邻居(2025-2026学年)
- 小学语文六年级百合花开教案试卷(2025-2026学年)
- 七年级语文下册陋室铭教案(2025-2026学年)
- 八年级语文单元教学设计示范
- 书法鉴赏 (浙江财大版)学习通超星期末考试答案章节答案2024年
- 2024年秋季新人教版九年级上册化学全册教案
- 介入治疗常见并发症及护理
- 小学作文教学困境分析及对策研究
- 六孔陶笛带歌词48首曲谱
- 电测应力应变实验课件ppt
- 大学生研究生就业方案
- 乘法小故事小学二年级
- 中考模拟考试语文答题卡Word版可以编辑(全黑色)
- 2023年度广东省成人高考《英语》(高升本)真题库及答案(单选题型)
- LY/T 2501-2015野生动物及其产品的物种鉴定规范
评论
0/150
提交评论