




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FoundationsofMachineLearning
ClusteringBasics(聚类基础)2023/11/4ClusteringLesson8-1ClusteringBasicsDefinitionandMotivation(定义与动机)DataPreprocessingandSimilarityComputationObjectiveofClusteringClusteringEvaluation
2023/11/4ClusteringLesson8-2ClusteringBasicsDefinitionandMotivationFindinggroupsofobjectssuchthattheobjectsinagroupwillbesimilar(orrelated)tooneanotheranddifferentfrom(orunrelatedto)theobjectsinothergroups.2023/11/4ClusteringLesson8-3ClusteringBasicsDefinitionandMotivation
Astand-alonetool:exploredatadistributionApreprocessingstepforotheralgorithmsPatternrecognition,spatialdataanalysis,imageprocessing,marketresearch,WWW,…ClusterdocumentsClusterweblogdatatodiscovergroupsofsimilaraccesspatternsClusteringCo-expressedGenesMarketing:Helpmarketersdiscoverdistinctgroupsintheircustomerbases,andthenusethisknowledgetodeveloptargetedmarketingprogramsClimate:understandingearthclimate,findpatternsofatmosphericandocean
2023/11/4ClusteringLesson8-4ClusteringBasicsDefinitionandMotivationAstand-alonetool:exploredatadistributionApreprocessingstepforotheralgorithmsPatternrecognition,spatialdataanalysis,imageprocessing,marketresearch,WWW,…TwoImportantAspectsPropertiesofinputdataDefinethesimilarityordissimilaritybetweenpointsRequirementofclusteringDefinetheobjectiveandmethodology
2023/11/4ClusteringLesson8-5ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputation(数据预处理和相似性计算)
ObjectiveofClusteringClusteringEvaluation
2023/11/4ClusteringLesson8-6DataPreprocessingandSimilarityComputationData:CollectionofdataobjectsandtheirattributesAnattributeisapropertyorcharacteristicofanobjectExamples:eyecolorofaperson,temperature,etc.Attributeisalsoknownasdimension,variable,field,characteristic,orfeatureAcollectionofattributesdescribeanobjectObjectisalsoknownasrecord,point,case,sample,entity,orinstance2023/11/4ClusteringLesson8-7DataPreprocessingandSimilarityComputationDataMatrix(数据矩阵)Representsnobjectswithpvariables
2023/11/4ClusteringLesson8-8DataPreprocessingandSimilarityComputationSimilarityandDissimilaritySimilarityNumericalmeasureofhowaliketwodataobjectsareIshigherwhenobjectsaremorealikeOftenfallsintherange[0,1]DissimilarityNumericalmeasureofhowdifferentaretwodataobjectsLowerwhenobjectsaremorealikeMinimumdissimilarityisoften0Upperlimitvaries2023/11/4ClusteringLesson8-9DataPreprocessingandSimilarityComputationDistanceMatrix(距离矩阵)Representspairwisedistanceinnobjects
Annbynmatrixd(i,j):
distanceordissimilaritybetweenobjectsiandjNonnegativeCloseto0:similar
2023/11/4ClusteringLesson8-10DataPreprocessingandSimilarityComputationDataMatrix->DistanceMatrix2023/11/4ClusteringLesson8-11DataPreprocessingandSimilarityComputationTypesofAttributes(属性的类型)Discrete(离散)HasonlyafiniteorcountablyinfinitesetofvaluesExamples:zipcodes,counts,orthesetofwordsinacollectionofdocumentsNote:binaryattributesareaspecialcaseofdiscreteattributesOrdinal(定序)HasonlyafiniteorcountablyinfinitesetofvaluesOrderofvaluesisimportantExamples:rankings(e.g.,painlevel1-10),grades(A,B,C,D)Continuous(连续)HasrealnumbersasattributevaluesExamples:temperature,height,orweightContinuousattributesaretypicallyrepresentedasfloating-pointvariables2023/11/4ClusteringLesson8-12DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributes
2023/11/4ClusteringLesson8-13DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMinkowskidistance:ageneralizationIfq=2,disEuclideandistanceIfq=1,disManhattandistance2023/11/4ClusteringLesson8-14DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributes
MinkowskiDistance—ContinuousAttributeStandardizationCalculatethemeanabsolutedeviationCalculatethestandardizedmeasurement(z-score)2023/11/4ClusteringLesson8-15DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeStandardizationMahalanobisDistance
Adissimilaritymeasurebetweentwo
randomvectorsxandyofthesame
distributionwiththe
covariancematrix
S.2023/11/4ClusteringLesson8-16DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeStandardizationMahalanobisDistanceCommonPropertiesofaDistanceDistances,suchastheEuclideandistance,havesomewellknownproperties1.d(p,q)>=0forallpandqandd(p,q)=0onlyifp=q.(Positivedefiniteness)2.d(p,q)=d(q,p)forallpandq.(Symmetry)3.d(p,r)<=d(p,q)+d(q,r)forallpointsp,q,andr.(TriangleInequality)2023/11/4ClusteringLesson8-17DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesComputesimilaritiesusingthefollowingquantitiesM01=thenumberofattributeswherepwas0andqwas1M10=thenumberofattributeswherepwas1andqwas0M00=thenumberofattributeswherepwas0andqwas0M11=thenumberofattributeswherepwas1andqwas1SimpleMatchingandJaccardCoefficients2023/11/4ClusteringLesson8-18DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesCommonPropertiesofaSimilaritys(p,q)=1(ormaximumsimilarity)onlyifp=q.s(p,q)=s(q,p)forallpandq.(Symmetry)wheres(p,q)is
thesimilaritybetweenpoints(dataobjects),pandq.2023/11/4ClusteringLesson8-19DataPreprocessingandSimilarityComputationSimilarity/DissimilarityforSimpleAttributesMinkowskiDistance—ContinuousAttributeMahalanobisDistanceSimilarityforBinaryAttributesCommonPropertiesofaSimilarityCharacteristicsoftheInputDataAreImportantSparseness,Attributetype,TypeofData,Dimensionality,NoiseandOutliers,TypeofDistribution=>Conductpreprocessingandselecttheappropriatedissimilarityorsimilaritymeasure=>Determinetheobjectiveofclusteringandchoosetheappropriatemethod2023/11/4ClusteringLesson8-20ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputationObjectiveofClustering(聚类目标)ClusteringEvaluation2023/11/4ClusteringLesson8-21ObjectiveofClusteringConsiderationsforClusterAnalysisPartitioningcriteriaSinglelevelvs.hierarchicalpartitioning(often,multi-levelhierarchicalpartitioningisdesirable)SeparationofclustersExclusive(e.g.,onecustomerbelongstoonlyoneregion)vs.overlapping(e.g.,onedocumentmaybelongtomorethanonetopic)HardversusfuzzyInfuzzyclustering,apointbelongstoeveryclusterwithsomeweightbetween0and1Weightsmustsumto1Probabilisticclusteringhassimilarcharacteristics
2023/11/4ClusteringLesson8-22ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringScalabilityAbilitytodealwithdifferenttypesofattributesMinimalrequirementsfordomainknowledgetodetermineinputparametersAbletodealwithnoiseandoutliersDiscoveryofclusterswitharbitraryshapeInsensitivetoorderofinputrecordsHighdimensionalityIncorporationofuser-specifiedconstraintsInterpretabilityandusability
2023/11/4ClusteringLesson8-23ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguous
2023/11/4ClusteringLesson8-24ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguousTypesofClustersCenter-based
Aclusterisasetofobjectssuchthatanobjectinaclusteriscloser(moresimilar)tothe“center”ofacluster,thantothecenterofanyotherclusterThecenterofaclusterisoftenacentroid,theaverageofallthepointsinthecluster,oramedoid,themost“representative”pointofacluster2023/11/4ClusteringLesson8-25ObjectiveofClusteringConsiderationsforClusterAnalysisRequirementsofClusteringNotionofaClustercanbeAmbiguousTypesofClustersCenter-based
Density-basedAclusterisadenseregionofpoints,whichisseparatedbylow-densityregions,fromotherregionsofhighdensity.Usedwhentheclustersareirregularorintertwined,andwhennoiseandoutliersarepresent.2023/11/4ClusteringLesson8-26ClusteringBasicsDefinitionandMotivationDataPreprocessingandSimilarityComputationObjectiveofClusteringClusteringEvaluation(聚类评价)2023/11/4ClusteringLesson8-27ClusteringEvaluationClustervalidationQuality:“goodness”ofclustersAssessthequalityandreliabilityofclusteringresultsWhyvalidation?ToavoidfindingclustersformedbychanceTocompareclusteringalgorithmsTochooseclusteringparameterse.g.,thenumberofclusters2023/11/4ClusteringLesson8-28ClusteringEvaluationAspectsofClusterValidation
Comparingtheclusteringresultstogroundtruth(externallyknownresults)–ExternalIndex(外部指标)Evaluatingthequalityofclusterswithoutreferencetoexternalinformation–Useonlythedata–InternalIndex(内部指标)Determiningthereliabilityofclusters–Towhatconfidencelevel,theclustersarenotformedbychance–Statisticalframework2023/11/4ClusteringLesson8-29ClusteringEvaluationComparingtoGroundTruth(与真值比较)NotationN:numberofobjectsinthedatasetP={P1,…,Ps}:thesetof“groundtruth”clustersC={C1,…,Ct}:thesetofclustersreportedbyaclusteringalgorithmThe“incidencematrix”(关联矩阵)NbyN(bothrowsandcolumnscorrespondtoobjects)Pij=1
ifOiandOjbelongtothesame“groundtruth”clusterinP;Pij=0otherwise
Cij=1ifOiandOjbelongtothesameclusterinC;Cij=0otherwise2023/11/4ClusteringLesson8-30ClusteringEvaluationComparingtoGroundTruthNotationThe“incidencematrix”(关联矩阵)RandIndexandJaccardCoefficientApairofdataobject(Oi,Oj)fallsintooneofthefollowingcategoriesSS:Cij=1andPij=1;(agree)DD:Cij=0andPij=0;(agree)SD:Cij=1andPij=0;(disagree)DS:Cij=0andPij=1;(disagree)2023/11/4ClusteringLesson8-31ClusteringEvaluationComparingtoGroundTruthNotationThe“incidencematrix”(关联矩阵)RandIndexandJaccardCoefficientEntropyandPuritythenumberofobjectsinboththek-thclusteroftheclusteringsolutionandj-thclusterofthegroundtruththenumberofobjectsinthek-thclusteroftheclusteringsolutionthenumberofobjectsinthej-thclusterofthegroundtruth2023/11/4ClusteringLesson8-32ClusteringEvaluationComparingtoGroundTruthInternalIndex(内部指标)UseonlythedatatomeasureclusterqualityMeasurethe“cohesion”and“separation”ofclustersCalculatethecorrelationbetweenclusteringresultsanddistancematrix2023/11/4ClusteringLesson8-33ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationCohesionismeasuredbythewithinclustersumofsquaresSeparationismeasuredbythebetweenclustersumofsquares2023/11/4ClusteringLesson8-34ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationCohesionismeasuredbythewithinclustersumofsquaresSeparationismeasuredbythebetweenclustersumofsquaresBSS+WSS=constantWSS(Cohesion)measureiscalledSumofSquaredError(SSE)—acommonlyusedmeasureAlargernumberofclusterstendtoresultinsmallerSSE2023/11/4ClusteringLesson8-35ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparationSilhouetteCoefficient(轮廓系数)SilhouetteCoefficientcombinesideasofbothcohesionandseparation.Foranindividualpoint,iCalculatea=averagedistanceofitothepointsinitsclusterCalculateb=min(averagedistanceofitopointsinanothercluster)Thesilhouettecoefficientforapointisthengivenbys=1–a/bifa<b,(s=b/a-1ifa>b,nottheusualcase)Typicallybetween0and1Thecloserto1thebetterCancalculatetheAverageSilhouettewidthforaclusteroraclustering2023/11/4ClusteringLesson8-36ClusteringEvaluationComparingtoGroundTruthInternalIndex(内部指标)CohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixDistanceMatrixDijisthesimilaritybetweenobjectOiandOjIncidenceMatrixCij=1ifOiandOjbelongtothesamecluster,Cij=0otherwise
ComputethecorrelationbetweenthetwomatricesOnlyn(n-1)/2entriesneedstobecalculatedHighcorrelationindicatesgoodclustering2023/11/4ClusteringLesson8-37ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixGivenDistanceMatrixD={d11,d12,…,dnn}andIncidenceMatrixC={c11,c12,…,cnn}.CorrelationrbetweenDandCisgivenby2023/11/4ClusteringLesson8-38ClusteringEvaluationComparingtoGroundTruthInternalIndexCohesionandSeparation
SilhouetteCoefficient(轮廓系数)CorrelationwithDistanceMatrixUsingSimilarityMatrixforClusterValidation
Orderthesimilaritymatrixwithrespecttoclusterlabelsandinspectvisually.2023/11/4ClusteringLesson8-39ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabilityofClustersNeedaframeworktointerpretanymeasure–Forexample,ifourmeasureofevaluationhasthevalue,10,isthatgood,fair,orpoor?StatisticsprovideaframeworkforclustervalidityThemore“atypical”aclusteringresultis,themorelikelyitrepresentsvalidstructureinthedata
2023/11/4ClusteringLesson8-40ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabilityofClustersStatisticalFrameworkforSSEExampleCompareSSEof0.005againstthreeclustersinrandomdataSSEHistogramof500setsofrandomdatapointsofsize100—lowestSSEis0.01732023/11/4ClusteringLesson8-41ClusteringEvaluationComparingtoGroundTruthInternalIndexReliabil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销渠道拓展实战作业指导书
- 自考专业(汉语言文学)常考点试卷含完整答案详解【全优】
- 中考数学总复习《 圆》模拟试题及答案详解【名师系列】
- 自考专业(金融)自我提分评估【有一套】附答案详解
- 综合解析华东师大版7年级下册期末测试卷审定版附答案详解
- 重难点自考专业(学前教育)试卷含完整答案【名师系列】
- 中级银行从业资格之中级银行业法律法规与综合能力题库检测模拟题及参考答案详解(达标题)
- 主管护师(中级)考前冲刺练习附完整答案详解【必刷】
- 环保公司能源管理办法
- 重庆市实验中学7年级数学下册变量之间的关系综合测评试卷(含答案详解版)
- 中铝矿业有限公司巩义市张家沟大发铝土矿矿山土地复垦与地质环境保护治理方案
- 班级管理常规优质课件
- IT运维服务方案信息运维服务方案
- ZSL1000、ZSL750塔吊外挂架施工方案
- 文化自信作文800字议论文
- GB/T 28287-2012足部防护鞋防滑性测试方法
- GB/T 27677-2017铝中间合金
- GB/T 19627-2005粒度分析光子相关光谱法
- 芜湖宜盛置业发展有限公司招聘3名编外工作人员(必考题)模拟卷
- 混凝土结构设计原理教学教案
- 齿轨卡轨车课件
评论
0/150
提交评论