




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
现代数字信号处理课程回顾第一章时域离散随机信号的分析第二章维纳滤波和卡尔曼滤波第三章自适应数字滤波器第四章功率谱估计第五章时频分析第一章时域离散随机信号的分析主要内容:平稳随机信号的统计描述随机序列数字特征的估计平稳随机序列通过线性系统时间序列信号模型对一个随机序列的统计描述,可以由这个序列的自相关函数来高度概括。对一平稳随机信号,只要知道它的自相关函数,就等于知道了该随机信号的主要数字特征。自相关函数及其性质:的特性的特性mm各态遍历性:
只要一个实现时间充分长的过程能够表现出各个实现的特征,就可以用一个实现来表示总体的特性。〈x(n)〉=mx=E[X(n)]〈x*(n)x(n+m)〉=rxx(m)=E[X*(n)X(n+m)]功率密度谱:
维纳–––辛钦定理(Wiener-KhinchinTheorem)
Pxx(ω)≥0随机序列数字特征的估计:估计准则:无偏性、有效性、一致性均值的估计:方差的估计:自相关函数的估计:平稳随机序列通过线性系统:相关卷积定理:卷积的相关函数等于相关函数的卷积e(n)=a(n)*b(n)f(n)=c(n)*d(n)
ref(m)=rac(m)*rbd(m)
ryy(m)=rxx(m)*v(m)=rxy(m)*h(-m)时间序列信号模型:MA模型ARMA模型AR模型滤波器阶数:对于IIR滤波器或者AR模型、ARMA模型,阶数是指p的大小,如果用差分方程表示,则p就是差分方程的阶数。对于FIR滤波器或者MA模型的阶数,则是指q的大小,或者说是它的长度减1。三种信号模型可以相互转化,而且都具有普遍适用性,但是对于同一时间序列用不同信号模型表示时,却有不同的效率。这里说的效率,指的是模型的系数愈少,效率愈高。谱分解定理:
如果功率谱Pxx(ejω)是平稳随机序列x(n)的有理谱,那么一定存在一个零极点均在单位圆内的有理函数H(z),满足式中,ak,bk都是实数,a0=b0=1,且|αk|<1,|βk|<1。rxx(m)Pxx(z)H(z)Z变换Z反变换谱分解自相关函数、功率谱、时间序列信号模型三者之间关系第二章维纳滤波和卡尔曼滤波主要内容:FIR维纳滤波求解IIR维纳滤波求解维纳一步线性预测x(n)=s(n)+v(n)最佳滤波器:维纳—霍夫方程:
维纳-霍夫(Wiener-Hopf)方程:FIR维纳滤波求解:k=0,1,2,…
设定d(n)=s(n),对上式两边做Z变换,得到Sxs(z)=Hopt(z)Sxx(z)非因果IIR维纳滤波求解:
信号和噪声不相关时因果IIR维纳滤波求解:
对于因果IIR维纳滤波器,其维纳-霍夫方程为k=0,1,2,…图2.3.5利用白化x(n)的方法求解维纳-霍夫方程
利用白化x(n)的方法求解维纳-霍夫方程:
因果维纳滤波器的复频域最佳解为
因果维纳滤波的最小均方误差为
通过前面的分析,因果维纳滤波器设计的一般方法可以按下面的步骤进行:
(1)根据观测信号x(n)的功率谱求出它所对应的信号模型的传输函数,即采用谱分解的方法得到B(z)。
(2)求 的Z反变换,取其因果部分再做Z变换,即舍掉单位圆外的极点,得
(3)积分曲线取单位圆,应用(2.3.38)式和(2.3.39)式,计算Hopt(z),E[|e(n)|2]min。维纳预测:图2.4.1(b)维纳预测器图2.4.1(a)维纳滤波器一步线性预测:采用p个最近的采样值来预测时间序列下一时刻的值,包括前向预测和后向预测两种。
前向预测:
得到下面的方程组:
将方程组写成矩阵形式
(Yule-Walker方程)第三章自适应数字滤波器主要内容:LMS自适应横向滤波器LMS自适应格型滤波器自适应滤波器的应用LMS自适应横向滤波器:e(n)=d(n)-y(n)
最佳权矢量W*和最小均方误差:
其中,μ是一个控制稳定性和收敛速度的参量,称之为收敛因子。方向是性能函数下降最快的方向,因此称为最陡梯度下降法。Widrow-HoffLMS算法:
最陡下降法:Widrow-HoffLMS算法:采用梯度的估计值代替梯度的精确值。
LMS算法加权矢量是在最陡下降法加权矢量附近随机变化的,
其统计平均值等于最陡下降法的加权矢量。图
3.2.10LMS算法稳态误差
μ值的影响
对稳定性的影响:
对收敛速度的影响:预测误差格型滤波器:LMS自适应格型滤波器:在满足预测误差的均方值最小的准则下,最佳自适应格型滤波器求解关键在于计算出反射系数。其方法有:自适应滤波器的应用:
自适应抵消器:(只有与参考输入相关的信号才能被抵消)参考输入端存在一定的有用信号:
当有信号分量泄漏到参考输入中时,噪声的抵消能力可以通过比较输入端的信噪比、参考输入端的信噪比及输出端的信噪比数值大小来评价。
泄露到参考输入端的有用信号越少,抵消效果越好。
自适应逆滤波:自适应均衡器与自适应解卷积问题都可归结为用自适应的方法求逆滤波系统的问题。自适应均衡器用以补偿信道干扰的影响,使接收信号与发送信号完全一致。h(n)w(n)第四章功率谱估计主要内容:经典谱估计:BT法、周期图法、修正周期图法;现代谱估计:AR模型法BT法:周期图法:
周期图属于渐近无偏估计,方差很大,不是一致估计。修正周期图法:Bartlett平均周期图法窗口处理法平均周期图Welch法(修正的周期图求平均法)
结论:传统的功率谱估计方法,采用观测到的N个样本值估计功率谱,认为在此观察到的N个数据以外的x(n)=0。因此,无论采取哪一种改进方法,总是以减少分辨率为代价,换取估计方差的减少,提高分辨率的问题无法根本解决。
估计功率谱的方法:首先根据信号观测数据估计信号自相关函数;求出模型参数;最后按照下式求出信号的功率谱:AR模型法:AR模型隐含着自相关函数外推的特性,使它具有高分辨率的优点。
m≥1m=0
0≤m≤p
m>p
信号预测误差最小原则(或预测误差功率最小)自相关法(Levinson递推法)Burg法协方差法修正协方差法关于AR模型阶次的选择如果是纯P阶AR信号,应选择模型阶次k≥P。
如果选择模型阶次k<P时,将产生对谱的平滑作用,降低谱的分辨率。对于白噪声中的AR信号,其阶次的选择应折衷考虑。如选择AR模型,其阶次应加大,较低的阶次会使谱估计产生偏移,降低分辨率。信噪比愈低,平滑作用愈严重,愈需要高的阶次,因此信噪比低应选高的阶次。阶次愈高,分辨率愈高;但阶次太高,会使估计误差加大,谱峰分裂。第五章时频分析主要内容:线性时频分析:短时傅里叶变换、小波分析;双线性时频分析:维格纳变换(WD)。傅立叶变换的不足:缺乏时间和频率的定位功能;分析时变信号和非平稳信号的局限性;分辨率上的局限性,受不确定原理的约束。STFT特点:STFT要求窗口内信号平稳,即窗口不能太长;时间分辨率和频率分辨率受不确定定理限制,不能同时任意小;窗口固定不变,分辨率单一;窗函数选择难;STFT建立在信号稳态基础之上,不能及时反映信号频谱随时间变化的情况。小波分析:小波基函数
当用较小的a对信号作高频分析时,实际上是用高频小波对信号作细致观察;当用较大的a对信号作低频分析时,实际上是用低频小波对信号作概貌观察。
a取不同值时小波变换对信号分析的时-频区间
小波变换的特点多分辨率分析方法;小波变换的时频关系受不确定原理的制约,在时频平面上的分析窗是可调的,但分析窗的面积保持不变;采用不同的尺度a作处理时,各个Ψ(aΩ)的中心频率和带宽都不一样,但是它们的品质因数Q却是相同的,即“中心频率/带宽”为常数。维格纳变换:(最简单的时频分布形式)WD服从二次叠加原理。
时频域(t,f)——时间-频率平面。模糊函数:
模糊域(θ,τ)——
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子商务专员招聘题目及答案
- 2024-2025学年贵州省铜仁市高二(下)质检数学试卷(7月份)(含答案)
- 2025年道行测试题及答案
- 2025年微创舒适拔牙试题及答案
- 2025年胸外考试题及答案
- 2025年五粮液笔试考试题及答案
- 2025年应激试题及答案
- 2025年面点试题及答案
- 2025年性病试题及答案
- 2025年保定二模文综试题及答案
- 2025年食品安全知识竞赛试题库与答案
- 欠税管理课件
- 中国心理卫生协会心理咨询职业技能培训项目模拟试题
- 2025上半年四川五粮液文化旅游开发有限公司招聘8人笔试历年参考题库附带答案详解
- 2024年金华市警示教育基地管理中心招聘真题
- 小学英语-三年级升四年级英语阅读理解专项(附答案)
- 农田水利工程监理环保监理实施方案和措施
- 2025年资阳市税务系统遴选面试真题附带题目详解含答案
- 股骨粗隆间骨折术后的护理
- 肿瘤科质控汇报
- 口腔科发展汇报
评论
0/150
提交评论