




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省枣庄市单招数学自考测试卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.log₁₀1000等于()
A.1B.2C.3D.4
2.已知向量a=(1,1),b=(0,2),则下列结论正确的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
3.圆x²+y²-4x+4y+6=0截直线x-y-5=0所得弦长等于()
A.√6B.1C.5D.5√2/2
4.“x<1”是”“|x|>1”的()
A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件
5.设集合A={1,2,3},B={1,2,4}则A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
6.如果a₁,a₂,…,a₈为各项都大于零的等差数列,公差d≠0,则().
A.a₁a₈>a₄a₅B.a₁a₈<a₄a₅C.a₁+a₈<a₄+a₅D.a₁a₈=a₄a₅
7.已知{an}是等差数列,a₁+a₂=4,a₇+a₈=28,则该数列前10项和S₁₀等于()
A.64B.100C.110D.120
8.过点(1,2)且与直线+y+1=0垂直的直线方程是()
A.x-y-1=0B.y-x-1-0C.x+y-1=0D.x+y+2=0
9.已知y=f(x)是奇函数,f(2)=5,则f(-2)=()
A.0B.5C.-5D.无法判断
10.若直线l过点(-1,2)且与直线2x-3y+1=0平行,则l的方程是().
A.3x+2y+8=0B.2x-3y+8=0C.2x-3y-8=0D.3x+2y-8=0
11.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()
A.4B.6C.10D.16
12.已知两个班,一个班35个人,另一个班30人,要从两班中抽一名学生,则抽法共有()
A.1050种B.65种C.35种D.30种
13.函数y=4sin2x(x∈R)的最小值是()
A.−4B.−1C.0D.4
14.设集合M={x│0≤x<3,x∈N},则M的真子集个数为()
A.3B.6C.7D.8
15.已知α∈(Π/2,Π),cos(Π-α)=√3/2,则tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
16.已知圆x²+y²=a与直线z+y-2=0相切,则a=()
A.2√2B.2C.3D.4
17.在复平面内,复数z=i(-2+i)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
18.同时掷两枚骰子,所得点数之积为12的概率为()
A.1/12B.1/4C.1/9D.1/6
19.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()
A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0
20.圆(x-2)²+y²=4的圆心到直线x+ay-4=0距离为1,且a>0,则a=()
A.3B.2C.√2D.√3
21.有2名男生和2名女生,李老师随机地按每两人一桌为他们排座位,一男一女排在一起的概率为()
A.2/3B.1/2C.1/3D.1/4
22.已知方程x²+px+15=0与x²-5x+q=0的解集分别是M与N,且M∩N={3},则p+q的值是()
A.14B.11C.2D.-2
23.函数f(x)=(√x)²的定义域是()
A.RB.(-∞,0)U(0,+∞)C.(0,+∞)D.[0,+∞)
24.已知定义在R上的函数F(x)=f(x)-4是奇函数,且满足f(-3)=1,则f(0)+f(3)=()
A.4B.6C.9D.11
25.某大学数学系共有本科生5000人,其中一、二、三四年级的学生比为4:3:2:1,用分层抽样的方法抽取一个容量为200人的样本,则应抽取二年级的学生人数为()
A.80B.40C.60D.20
26.已知函数f(x)=|x|,则它是()
A.奇函数B.偶函数C.既是奇函数又是偶函数D.无法判断
27.不在3x+2y<6表示的平面区域内的点是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)
28.不等式|x-5|≤3的整数解的个数有()个。
A.5B.6C.7D.8
29.在空间中,直线与平面的位置关系是()
A.平行B.相交C.直线在平面内D.平行、相交或直线在平面内
30.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.
A.0B.1C.2D.3
31.样本5,4,6,7,3的平均数和标准差为()
A.5和2B.5和√2C.6和3D.6和√3
32.已知sinθ+cosθ=1/3,那么sin2θ的值为()
A.2√2/3B.-2√2/3C.8/9D.-8/9
33.在△ABC中,“cosA=cosB”是“A=B”的()
A.充分条件B.必要条件C.充要条件D.既不是充分也不是必要条件
34.若等差数列前两项为-3,3,则数列的公差是多少().
A.-3B.3C.0D.6
35.在一个口袋中有2个白球和3个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率是()
A.3/7B.9/10C.1/5D.1/6
36.袋中有除颜色外完全相同的2红球,2个白球,从袋中摸出两球,则两个都是红球的概率是()
A.1/6B.1/3C.1/2D.2/3
37.已知角α的终边上一点P(-3,4),则cosα的值为()
A.3/5B.4/5C.-3/5D.-4/5
38.定义在R上的函数f(x)是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于()
A.-1B.0C.1D.4
39.已知点A(1,1)和点B(5,5),则线段AB的垂直平分线方程为()
A.x+y-6=0B.2x+y一6=0C.z+y+6=0D.4x+y+6=0
40.直线斜率为1的直线为().
A.x+y−1=0B.x−y−1=0C.2x−y−4=0D.x−2y+1=0
41.已知角α终边上一点的坐标为(-5,-12),则下列说法正确的是()
A.sinα=12/13B.tanα=5/12C.cosα=-12/13D.cosα=-5/13
42.若正实数x,y满足2x+y=1,则1/x+1/y的最小值为()
A.1/2B.1C.3+2√2D.3-2√2
43.log₄64-log₄16等于()
A.1B.2C.4D.8
44.经过两点A(4,0),B(0,-3)的直线方程是()
A.3x-4y-12=0
B.3x+4y-12=0
C.4x-3y+12=0
D.4x+3y+12=0
45.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
46.不等式|x-1|<2的解集为()
A.y=x²B.y=x²-xC.y=x³D.y=1/x
47.函数=sin(2x+Π/2)+1的最小值和最小正周期分别为()
A.1和2πB.0和2πC.1和πD.0和π
48.已知α为第二象限角,点P(x,√5)为其终边上的一点,且cosα=√2x/4,那么x=()
A.√3B.±√3C.-√2D.-√3
49.向量a=(1,0)和向量b=(1,√3)的夹角为()
A.0B.Π/6C.Π/2D.Π/3
50.下列各角中,与330°的终边相同的是()
A.570°B.150°C.−150°D.−390°
二、填空题(20题)51.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
52.不等式3|x|<9的解集为________。
53.数列x,2,y既是等差数列也是等比数列,则y/x=________。
54.在等比数列中,q=2,a₁+a₃+a₅=21,则S₆=________。
55.不等式x²-2x≤0的解集是________。
56.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
57.函数y=(cos2x-sin2x)²的最小正周期T=________。
58.甲乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得的环数如下:0,1,5,9,10,那么成绩较为稳定的是________。
59.已知向量a=(3,4),b=(5,12),a与b夹角的余弦值为________。
60.不等式|8-2x|≤3的解集为________。
61.若(lg50+lg2)(√2)^x=4,则x=________。
62.已知点A(1,2)和B(3,-4),则以线段AB为直径的圆的标准方程是________。
63.已知过抛物线y²=4x焦点的直线l与抛物有两个交点A(x₁,y₁)和B(x₂,y₂)如果x₁+x₂=6,则|AB|=_________。
64.等比数列{an}中,a₃=1/3,a₇=3/16,则a₁=________。
65.过点A(2,-1),B(0,-1)的直线的斜率等于__________.
66.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,则sinα=______。
67.已知平面向量a=(1,2),=(一2,1),则a与b的夹角是________。
68.已知f(x)=x+6,则f(0)=____________;
69.已知二次函数y=x²-mx+1的图象的对称轴方程为=2则此函数的最小值为________。
70.已知A(1,3),B(5,1),则线段AB的中点坐标为_________;
三、计算题(10题)71.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
72.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
73.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
74.已知sinα=1/3,则cos2α=________。
75.解下列不等式x²>7x-6
76.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
77.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积
78.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率
79.解下列不等式:x²≤9;
80.求函数y=cos²x+sinxcosx-1/2的最大值。
参考答案
1.C
2.B
3.A由圆x²+y²-4x+4y+6=0,易得圆心为(2,-2),半径为√2.圆心(2,-2)到直线x-y-5=0的距离为√2/2.利用几何性质,则弦长为2√(√2)²-(√2/2)²=√6。考点:和圆有关的弦长问题.感悟提高:计算直线被圆截得弦长常用几何法,利用圆心到直线的距离,弦长的一半,及半径构成直角三角形计算,即公式d²+(AB/2)²=r²,d是圆到直线的距离,r是圆半径,AB是弦长.
4.B
5.D
6.B[解析]讲解:等差数列,a₁a₈=a₁²+7da₁,a₄a₅=a₁²+7da₁+12d²,所以a₁a₈<a₄a₅
7.B
8.B
9.C依题意,y=f(x)为奇函数,∵f(2)=5,∴f(-2)=-f(2)=-5,故选C.考点:函数的奇偶性应用.
10.B[解析]讲解:考察直线方程,平行直线方程除了常数,其余系数成比例,排除A,D,直线过点(-1,2),则B
11.D
12.B
13.A[解析]讲解:正弦函数图像的考察,正弦函数的最值是1和-1,所以4sin2x最小值为-4,选A
14.C[解析]讲解:M的元素有3个,子集有2^3=8个,减去一个自身,共有7个真子集。
15.A
16.C
17.C
18.C
19.D
20.D
21.A
22.B
23.D因为二次根式内的数要求大于或等于0,所以x≥0,即定义域为[0,+∞),选D.考点:函数二次根式的定义域
24.D
25.C
26.B
27.D
28.C[解析]讲解:绝对值不等式的化简,-3≤x-5≤3,解得2≤x≤8,整数解有7个
29.D
30.C
31.B
32.D
33.C[解析]讲解:由于三角形内角范围是(0,π)余弦值和角度一一对应,所以cosA=cosB与A=B是可以互相推导的,是充要条件,选C
34.D[解析]讲解:考察等差数列的性质,公差为后一项与前一项只差,所以公差为d=3-(-3)=6
35.B
36.A
37.C
38.B
39.A
40.B[解析]讲解:考察直线斜率,将直线方程化成的一般形式y=kx+b,则x的系数k就是直线的斜率,只有By=x+1,答案选B。
41.D
42.C考点:均值不等式.
43.A
44.A由直线方程的两点式可得经过两点两点A(4,0),B(0,-3)的直线方程为:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故选A.考点:直线的两点式方程.
45.D
46.A
47.D
48.D
49.D
50.D[解析]讲解:考察终边相同的角,终边相同则相差整数倍个360°,选D
51.(x-2)²+(y+1)²=8
52.(-3,3)
53.1
54.63
55.[0,2]
56.40
57.Π/2
58.甲
59.63/65
60.[5/2,11/2]
61.2
62.(x-2)²+(y+1)²=10
63.8
64.4/9
65.0
66.√3/2
67.90°
68.6
69.-3
70.(3,2)
71.4/7
72.解:(1)y=3x(0≤x≤10)y=3.5x-5(x>10)(2)因为张大爷10月份缴水费为37元,所以张大爷10月份用水量一定超过10m³又因为y=37所以3.5x-5=37所以x=12m³答:张大爷10月份用水12m³。
73.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45981.1-2025重型燃气轮机用大型铸锻件第1部分:钢质自由锻件
- 2024-2025学年临床执业医师考前冲刺练习试题附答案详解【基础题】
- 2025石油石化职业技能鉴定考试预测复习含答案详解(能力提升)
- 婴幼儿秋季腹泻的生理易感因素深度剖析
- 外墙装修工程合同(标准版)
- 2024年会计硕士能力提升B卷题库及参考答案详解(考试直接用)
- 2025年私人银行业务客户服务模式优化与创新研究报告
- 2025年建筑信息模型(BIM)在工程项目全过程管理中的项目可持续发展报告
- 2025年社区团购市场用户留存与社区电商模式研究报告
- 2025年环保产业技术创新与产业升级新能源利用研究报告
- 2025年秋人教版(2024)初中数学八年级第一学期教学计划及教学进度表
- 2025年全国计算机等级考试三级网络技术模拟题及答案
- 软件行业基础知识培训课件
- GB 46039-2025混凝土外加剂安全技术规范
- 传染病医院质量控制检查标准表
- 卷烟零售户培训课件
- 刑事诉讼法案例课件
- 2025年杭州市上城区九堡街道社区卫生服务中心招聘编外4人笔试备考试题及答案解析
- 2025年煤矿从业人员安全培训考试题库及答案
- 医院净化空调系统基本知识
- 内蒙锡林郭勒盟卫生系统招聘考试(护理学专业知识)题含答案2024年
评论
0/150
提交评论