因式分解试题集含答案_第1页
因式分解试题集含答案_第2页
因式分解试题集含答案_第3页
因式分解试题集含答案_第4页
因式分解试题集含答案_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

?因式分解?〔时间:90120〕一、填空题(每题3分,共30分)1.假设m2+2m+n2-6n+6=0,那么m=.n=.2.分解因式y4+2y2+81=.3.多项式x4-2x2+ax+b有因式x2-x+1,试将这多项式分解因式,那么x4-2x2+ax+b=,其中a=.b=.4.假设(x2+y2)(x2+y2-1)-12=0,那么x2+y2=.5.分解因式a2(b-c)+b2(c-a)+c2(a-b)=.6.如果m=a(a+1)(a+2),n=a(a-1)(a+1),那么m-n=.7.分解因式7xn+1-14xn+7xn-1〔n为不小于1的整数〕=.8.a-b=1,ab=2,那么a2b-2a2b2+ab2的值是9.观察以下算式,32-12=852-32=1672-52=2492-72=32……根据探寻到的规律,请用n的等式表示第n个等式10.假设x-1是x2-5x+c的一个因式,那么c=.二、选择题(每题3分,共24分)11.以下从左边到右边的变形①15x2y=3x·5xy②〔a+b〕〔a-b〕=a2-b2③a2-2a+1=(a-1)2④x2+3x+1=x(x+3+)其中因式分解的个数为〔〕A.0个B.2个C.3个D.1个12.在多项式①x2+2y2,②x2-y2,③-x2+y2,④-x2-y2中能用两数和乘以它们的差的公式进行因式分解的有〔〕A.1个B.2个C.3个D.4个13.以下各式中不能分解因式的是〔〕A.4x2+2xy+y2B.4x2-2xy+y2C.4x2-y2D.-4x2-y214.以下能用两数和的平方公式进行因式分解的是〔〕A.m2-9n2B.p2-2pq+4q2C.-x2-4xy+4y2D.9〔m+n〕2-6〔m+n〕+115.假设25x2+kxy+4y2可以解为〔5x-2y〕2,那么k的值为〔〕A.-10 B.10 C.-20 D.2016.以下多项式中不能用提公因式进行因式分解的是〔〕A.-x2-xy+y2 B.x-xyC.-m3+mn2 D.-3x2+917.81-xk=(9+x2)(3+x)(3-x),那么k的值是()A.k=2B.k=3C.k=4D.k=618.9x2+mxy+16y2是一个完全平方式,那么m的值是〔〕A.12B.24C.±12.D.±24三、解答题〔共54分〕19.把以下各式分解因式(每题4分,共20分)(1)8a2-2b2(2)4xy2-4x2y-y3(3)4x2y2-(x2+y2)2(4)9x2+16(x+y)2-24x(x+y)(5)〔a-b〕3-2(b-a)2+a-b20.(8分xy=5,a-b=6,求证xya2+xyb2-2abxy的值21.(8分)假设x2+2(m-3)x+16是一个整式的完全平方,求m的值.22.(8分)求证32002-4×32001+10×32000能被7整除.23..(10分)a2+b2+a2b2+1=4ab,求a,b的值四、综合探索题〔12分〕24.a、b、c为三角形三边,且满足.试说明该三角形是等边三角形.参考答案:一、1.-3;32.(y2+4y+9)(y2-4y+9)3.(x2-x+1)(x+2)(x-1);3;-24.45.(a-b)(b-c)(a-c)6.a(a+1)7.7xn-1〔x-1〕2〔提示:7xn+1-14xn+7xn-1=7·xn-1·x2-14xn-1·x+7xn-1=7xn-1〔x2-2x+1〕=7xn-1〔x-1〕2〕8.2〔提示:解这种题型比拟简便而常用的方法是先对所给的代数式进行因式分解,使之出现ab,a-b的式子,代入求值.简解如下:∵a-b=1,ab=2∴a3b-2a2b2+ab3=ab〔a2-2ab+b2〕=ab〔a-b〕2=2×1=2〕9.〔2n+1〕2-〔2n-1〕2=8n〔提示:等式的左边是两个连续的奇数的平方差,右边是8×1,8×2,8×3,8×4,……,8×n.〕10.4〔提示:令x=1,那么x-1=0,这时x2-5x+c=0即1-5+c=0,c=4〕新课标第一网二、11.D〔提示:①②④均不是因式分解〕.12.B13.D14.D15.C〔提示:〔5x-2y〕2=25x2-20xy+4y2故k=-20〕16.A〔点拨:B中有公因式x,C中有m,D中有3〕.17.C〔提示:将等式的右边按多项式乘法展开,建立恒等式后,令等式左右两边对应项项系数相等即可〕18.D〔提示:完全平方公式有两个,勿漏解〕三、19.(1)2(2a+b)(2a-b)(2)-y(2x-y)2(3)4x2y2-〔x2+y2〕2=〔2xy〕2-〔x2+y2〕2=〔2xy+x2+y2〕〔2xy-x2-y2〕=-〔x2+2xy+y2〕〔x2-2xy+y2〕=-〔x+y〕2〔x-y〕2(4)9x2+16〔x+y〕2-24x〔x+y〕=[4〔x+y〕]2-2×4〔x+y〕·3x+〔3x〕2=[4〔x+y〕-3x]2=〔x+4y〕2(5)〔a-b〕3-2〔b-a〕2+a-b=〔a-b〕3-2〔a-b〕2+a-b=〔a-b〕[〔a-b〕2-2〔a-b〕+1]=〔a-b〕[〔a-b〕2-2〔a-b〕+12]=〔a-b〕〔a-b-1〕220.18021.解:∵x2+2〔m-3〕x+16=x2+2〔m-3〕x+42∴2〔m-3〕x=±2×4x∴m=7或m=-122.证明:32002-4×32001+10×32000=32×32000-4×3×32000+10×3200=32000〔32-12+10〕=7×32000∴32002-4×32001+10×32000能被7整除.23.a=1,b=1或a=-1,b=-1.四、24.解:,,,,∴a-b=0,b-c=0,a-c=0,∴a=b=c.∴此三角形为等边三角形.新课标第一网因式分解专题过关1.将以下各式分解因式〔1〕3p2﹣6pq〔2〕2x2+8x+82.将以下各式分解因式〔1〕x3y﹣xy〔2〕3a3﹣6a2b+3ab2.3.分解因式〔1〕a2〔x﹣y〕+16〔y﹣x〕〔2〕〔x2+y2〕2﹣4x2y24.分解因式:〔1〕2x2﹣x〔2〕16x2﹣1〔3〕6xy2﹣9x2y﹣y3〔4〕4+12〔x﹣y〕+9〔x﹣y〕25.因式分解:〔1〕2am2﹣8a〔2〕4x3+4x2y+xy26.将以下各式分解因式:〔1〕3x﹣12x3〔2〕〔x2+y2〕2﹣4x2y27.因式分解:〔1〕x2y﹣2xy2+y3〔2〕〔x+2y〕2﹣y28.对以下代数式分解因式:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕〔2〕〔x﹣1〕〔x﹣3〕+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把以下各式分解因式:〔1〕x4﹣7x2+1〔2〕x4+x2+2ax+1﹣a2〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2〔4〕x4+2x3+3x2+2x+112.把以下各式分解因式:〔1〕4x3﹣31x+15;〔2〕2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;〔3〕x5+x+1;〔4〕x3+5x2+3x﹣9;〔5〕2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕3p2﹣6pq;〔2〕2x2+8x+8分析:〔1〕提取公因式3p整理即可;〔2〕先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:〔1〕3p2﹣6pq=3p〔p﹣2q〕,〔2〕2x2+8x+8,=2〔x2+4x+4〕,=2〔x+2〕2.2.将以下各式分解因式〔1〕x3y﹣xy〔2〕3a3﹣6a2b+3ab2.分析:〔1〕首先提取公因式xy,再利用平方差公式进行二次分解即可;〔2〕首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:〔1〕原式=xy〔x2﹣1〕=xy〔x+1〕〔x﹣1〕;〔2〕原式=3a〔a2﹣2ab+b2〕=3a〔a﹣b〕2.3.分解因式〔1〕a2〔x﹣y〕+16〔y﹣x〕;〔2〕〔x2+y2〕2﹣4x2y2.分析:〔1〕先提取公因式〔x﹣y〕,再利用平方差公式继续分解;〔2〕先利用平方差公式,再利用完全平方公式继续分解.解答:解:〔1〕a2〔x﹣y〕+16〔y﹣x〕,=〔x﹣y〕〔a2﹣16〕,=〔x﹣y〕〔a+4〕〔a﹣4〕;〔2〕〔x2+y2〕2﹣4x2y2,=〔x2+2xy+y2〕〔x2﹣2xy+y2〕,=〔x+y〕2〔x﹣y〕2.4.分解因式:〔1〕2x2﹣x;〔2〕16x2﹣1;〔3〕6xy2﹣9x2y﹣y3;〔4〕4+12〔x﹣y〕+9〔x﹣y〕2.分析:〔1〕直接提取公因式x即可;〔2〕利用平方差公式进行因式分解;〔3〕先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;〔4〕把〔x﹣y〕看作整体,利用完全平方公式分解因式即可.解答:解:〔1〕2x2﹣x=x〔2x﹣1〕;〔2〕16x2﹣1=〔4x+1〕〔4x﹣1〕;〔3〕6xy2﹣9x2y﹣y3,=﹣y〔9x2﹣6xy+y2〕,=﹣y〔3x﹣y〕2;〔4〕4+12〔x﹣y〕+9〔x﹣y〕2,=[2+3〔x﹣y〕]2,=〔3x﹣3y+2〕2.5.因式分解:〔1〕2am2﹣8a;〔2〕4x3+4x2y+xy2分析:〔1〕先提公因式2a,再对余下的多项式利用平方差公式继续分解;〔2〕先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:〔1〕2am2﹣8a=2a〔m2﹣4〕=2a〔m+2〕〔m﹣2〕;〔2〕4x3+4x2y+xy2,=x〔4x2+4xy+y2〕,=x〔2x+y〕2.6.将以下各式分解因式:〔1〕3x﹣12x3〔2〕〔x2+y2〕2﹣4x2y2.分析:〔1〕先提公因式3x,再利用平方差公式继续分解因式;〔2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:〔1〕3x﹣12x3=3x〔1﹣4x2〕=3x〔1+2x〕〔1﹣2x〕;〔2〕〔x2+y2〕2﹣4x2y2=〔x2+y2+2xy〕〔x2+y2﹣2xy〕=〔x+y〕2〔x﹣y〕2.7.因式分解:〔1〕x2y﹣2xy2+y3;〔2〕〔x+2y〕2﹣y2.分析:〔1〕先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;〔2〕符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:〔1〕x2y﹣2xy2+y3=y〔x2﹣2xy+y2〕=y〔x﹣y〕2;〔2〕〔x+2y〕2﹣y2=〔x+2y+y〕〔x+2y﹣y〕=〔x+3y〕〔x+y〕.8.对以下代数式分解因式:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕;〔2〕〔x﹣1〕〔x﹣3〕+1.分析:〔1〕提取公因式n〔m﹣2〕即可;〔2〕根据多项式的乘法把〔x﹣1〕〔x﹣3〕展开,再利用完全平方公式进行因式分解.解答:解:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕=n2〔m﹣2〕+n〔m﹣2〕=n〔m﹣2〕〔n+1〕;〔2〕〔x﹣1〕〔x﹣3〕+1=x2﹣4x+4=〔x﹣2〕2.9.分解因式:a2﹣4a+4﹣b2.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=〔a2﹣4a+4〕﹣b2=〔a﹣2〕2﹣b2=〔a﹣2+b〕〔a﹣2﹣b〕.10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=〔a2﹣2a+1〕﹣b2=〔a﹣1〕2﹣b2=〔a﹣1+b〕〔a﹣1﹣b〕.11.把以下各式分解因式:〔1〕x4﹣7x2+1;〔2〕x4+x2+2ax+1﹣a2〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2〔4〕x4+2x3+3x2+2x+1分析:〔1〕首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;〔2〕首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;〔3〕首先把﹣2x2〔1﹣y2〕变为﹣2x2〔1﹣y〕〔1﹣y〕,然后利用完全平方公式分解因式即可求解;〔4〕首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:〔1〕x4﹣7x2+1=x4+2x2+1﹣9x2=〔x2+1〕2﹣〔3x〕2=〔x2+3x+1〕〔x2﹣3x+1〕;〔2〕x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=〔x2+1〕﹣〔x﹣a〕2=〔x2+1+x﹣a〕〔x2+1﹣x+a〕;〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2=〔1+y〕2﹣2x2〔1﹣y〕〔1+y〕+x4〔1﹣y〕2=〔1+y〕2﹣2x2〔1﹣y〕〔1+y〕+[x2〔1﹣y〕]2=[〔1+y〕﹣x2〔1﹣y〕]2=〔1+y﹣x2+x2y〕2〔4〕x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2〔x2+x+1〕+x〔x2+x+1〕+x2+x+1=〔x2+x+1〕2.12.把以下各式分解因式:〔1〕4x3﹣31x+15;〔2〕2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;〔3〕x5+x+1;〔4〕x3+5x2+3x﹣9;〔5〕2a4﹣a3﹣6a2﹣a+2.分析:〔1〕需把﹣31x拆项为﹣x﹣30x,再分组分解;〔2〕把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;〔3〕把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;〔4〕把x3+5x2+3x﹣9拆项成〔x3﹣x2〕+〔6x2﹣6x〕+〔9x﹣9〕,再提取公因式因式分解;〔5〕先分组因式分解,再用拆项法把因式分解彻底.解答:解:〔1〕4x3﹣31x+15=4x3﹣x﹣30x+15=x〔2x+1〕〔2x﹣1〕﹣15〔2x﹣1〕=〔2x﹣1〕〔2x2+1﹣15〕=〔2x﹣1〕〔2x﹣5〕〔x+3〕;〔2〕2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣〔a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2〕=〔2ab〕2﹣〔a2+b2﹣c2〕2=〔2ab+a2+b2﹣c2〕〔2ab﹣a2﹣b2+c2〕=〔a+b+c〕〔a+b﹣c〕〔c+a﹣b〕〔c﹣a+b〕;〔3〕x5+x+1=x5﹣x2+x2+x+1=x2〔x3﹣1〕+〔x2+x+1〕=x2〔x﹣1〕〔x2+x+1〕+〔x2+x+1〕=〔x2+x+1〕〔x3﹣x2+1〕;〔4〕x3+5x2+3x﹣9=〔x3﹣x2〕+〔6x2﹣6x〕+〔9x﹣9〕=x2〔x﹣1〕+6x〔x﹣1〕+9〔x﹣1〕=〔x﹣1〕〔x+3〕2;〔5〕2a4﹣a3﹣6a2﹣a+2=a3〔2a﹣1〕﹣〔2a﹣1〕〔3a+2〕=〔2a﹣1〕〔a3﹣3a﹣2〕=〔2a﹣1〕〔a3+a2﹣a2﹣a﹣2a﹣2〕=〔2a﹣1〕[a2〔a+1〕﹣a〔a+1〕﹣2〔a+1〕]=〔2a﹣1〕〔a+1〕〔a2﹣a﹣2〕=〔a+1〕2〔a﹣2〕〔2a﹣1〕.因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.假设m2-3m+2=(m+a)(m+b),那么a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在以下等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-84.以下各式中,能用平方差公式分解因式的是A.a2+b2B.-a2+b2C.-a2-b2D.-(-a2)+b25.假设9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12B.±24C.12D.±126.把多项式an+4-an+1分解得A.an(a4-a)B.an-1(a3-1)C.an+1(a-1)(a2-a+1)D.an+1(a-1)(a2+a+1)7.假设a2+a=-1,那么a4+2a3-3a2-4a+3的值为A.8B.7C.10D.128.x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3B.x=1,y=-3C.x=-1,y=3D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得A.(x-10)(x+6)B.(x+5)(x-12)C.(x+3)(x-20)D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得A.(x2-2)(x2-1)B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1)D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.以下各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.以下因式分解错误的选项是A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.a2x2±2x+b2是完全平方式,且a,b都不为零,那么a与b的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2+2x+2C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab)D.(a2+b2-ab)222.-(3x-1)(x+2y)是以下哪个多项式的分解结果A.3x2+6xy-x-2yB.3x2-6xy+x-2yC.x+2y+3x2+6xyD.x+2y-3x2-6xy23.64a8-b2因式分解为A.(64a4-b)(a4+b)B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b)D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为A.(5x-y)2B.(5x+y)2C.(3x-2y)(3x+2y)D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为A.(3x-2y-1)2B.(3x+2y+1)2C.(3x-2y+1)2D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为A.c(a+b)2B.c(a-b)2C.c2(a+b)2D.c2(a-b)28.假设4xy-4x2-y2-k有一个因式为(1-2x+y),那么k的值为A.0B.1C.-1D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的选项是A.-(a2+b2)(3x+4y)B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y)D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的选项是A.2(a+b-2c)B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;34.a2-b2+2ac+c2;35.a3-ab2+a-b;36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.四、证明(求值):1.a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.假设x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.假设x,y为任意有理数,比拟6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B2.C3.C4.B5.B6.D7.A8.C9.D10.B11.C12.C13.B14.C15.D16.B17.B18.D19.A20.B21.B22.D23.C24.A25.A26.C27.C28.C29.D30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).31.(x+y)(x-y-1).38.(x+2y-7)(x+2y+5).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.因式分解练习课2023-11-8张衍楠精读定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。理解因式分解的要点:1是对多项式进行因式分解;2每个因式必须是整式;3结果是积的形式;4各因式要分解到不能再分解为止。因式分解和整式乘法的关系。例1、以下各式的变形中,是否是因式分解,为什么?〔5个式子均不是〕〔1〕;〔2〕;〔3〕;〔4〕;提公因式法——形如运用公式法——平方差公式:,完全平方公式:十字相乘法分组分解法〔适用于四次或四项以上,①分组后能直接提公因式②分组后能直接运用公式〕。例2、因式分解〔此题只给出最后答案〕(1)(2)(3)(4)(5)=(6)(7)例3、因式分解〔此题只给出答案〕1、=2、3、4、小结:因式分解的意义左边=右边↓↓多项式整式×整式〔单项式或多项式〕因式分解的一般步骤第一步提取公因式法第二步看项数1两项式:平方差公式2三项式:完全平方公式、十字相乘法3四项或四项以上式:分组分解法3、多项式有因式乘积项→展开→重新整理→分解因式因式分解练习:1、2、3、4、5、6、7、8、9、因式分解强化练习答案填写以下各式的空缺项,使它能用完全平方公式分解因式。(1)(2)(3)(4)(5)选择(1)用分组分解法把分解因式,正确的分组方法是:〔D〕A.B.C.D.(2)多项式可分解因式为〔C〕A.B.C.D.(3)计算的值是〔D〕A.B.C.D.(4)将分解因式,结果是〔B〕A.B.C.D.填空(1)假设多项式,那么m=-1,n=-3。(2)(3)(4),给x添加系数,使该式可以十字相乘。答案:10,-10,22,-22(5)分组后,先用完全平方公式分解,再用平方差公式分解。(6)中有因式x+b,那么k=2b(a+b)。应用因式分解计算(1)(2)因式分解(1)==(2)===(3)=(4)===(5)=====(6)===(7)(8)(9)(10)(11)(12)(13)(14)(15)(16),求的值。解:所以设n为整数,用因式分解说明能被4整除。解:4是的一个因式,所以能被4整除。在六位数abcdef中,a=d,b=e,c=f,求证这个六位数必能被7、11、13整除。解:abcdef=100000a+10000b+1000c+100d+10e+f因为a=d,b=e,c=f,所以abcdef=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c=1001(100a+10b+c)=7×11×13(100a+10b+c)所以这个六位数能被7、11、13整除。a,b,c为三角形的三边,且满足,试说明该三角形是等边三角形。解:所以a=b,a=c,b=c即a=b=c所以该三角形是等边三角形。小明曾作出判断,当k为正整数时,一定能被120整除,你认为小明的判断正确吗?说说你的理由。解:因式分解的结果说明是5个连续正整数的乘积,5个连续的正整数中必然包括5,也必然包括3或3的倍数〔6、9〕,必然包括4或4的倍数〔8〕,还必然有至少2个偶数,所以5、3、4、2是的因子,5×3×4×2=120,所以一定能被120整除。补充题:计算(22+42+62+……+20002)﹣(12+32+52+……+19992).解:平方差公式原式=(22﹣12)+(42﹣32)+(62﹣52)+…..+(20002﹣19992)=3+7+11+……+3999〔首尾相加,共有500个4002〕=4002×500=2001000初二数学因式分解练习题姓名填空题:1、利用分解因式计算:(1)=___________。(2)=__________。(3)5×998+10=____________。2、假设是的完全平方式,那么=__________。3、假设,那么=________,=________。4、假设那么=_________,=__________。5、,那么=___________。6、观察以下各式:,…将你猜测到的规律用只含一个字母的式子表示出来:____________________。选择题:1、以下变形,是因式分解的是〔〕A.B.C.D.2、以下各式中,不含因式的是〔〕A.B.C.D.3、以下各式中,能用平方差分解因式的式子是〔〕A.B.C.D.4、,那么的值是〔〕A.,B.C.D.,5、如果是一个完全平方式,那么的值是〔〕A.B.C.D.6、当n是整数时,是()把以下各式因式分解:〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕四、、互为相反数,且满足,求的值。因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.假设m2-3m+2=(m+a)(m+b),那么a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是()A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于()A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在以下等式中,属于因式分解的是()A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-84.以下各式中,能用平方差公式分解因式的是()A.a2+b2B.-a2+b2C.-a2-b2D.-(-a2)+b25.假设9x2+mxy+16y2是一个完全平方式,那么m的值是()A.-12B.±24C.12D.±126.把多项式an+4-an+1分解得()A.an(a4-a)B.an-1(a3-1)C.an+1(a-1)(a2-a+1)D.an+1(a-1)(a2+a+1)7.假设a2+a=-1,那么a4+2a3-3a2-4a+3的值为()A.8B.7C.10D.128.x2+y2+2x-6y+10=0,那么x,y的值分别为()A.x=1,y=3B.x=1,y=-3C.x=-1,y=3D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得()A.(m+1)4(m+2)2B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得()A.(x-10)(x+6)B.(x+5)(x-12)C.(x+3)(x-20)D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得()A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得()A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得()A.(x2-2)(x2-1)B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1)D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为()A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是()A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.以下各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有()A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为()A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.以下因式分解错误的选项是()A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.a2x2±2x+b2是完全平方式,且a,b都不为零,那么a与b的关系为()A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是()A.不能分解因式B.有因式x2+2x+2C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为()A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab)D.(a2+b2-ab)222.-(3x-1)(x+2y)是以下哪个多项式的分解结果()A.3x2+6xy-x-2yB.3x2-6xy+x-2yC.x+2y+3x2+6xyD.x+2y-3x2-6xy23.64a8-b2因式分解为()A.(64a4-b)(a4+b)B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b)D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为()A.(5x-y)2B.(5x+y)2C.(3x-2y)(3x+2y)D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为()A.(3x-2y-1)2B.(3x+2y+1)2C.(3x-2y+1)2D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为()A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为()A.c(a+b)2B.c(a-b)2C.c2(a+b)2D.c2(a-b)28.假设4xy-4x2-y2-k有一个因式为(1-2x+y),那么k的值为()A.0B.1C.-1D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的选项是()A.-(a2+b2)(3x+4y)B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y)D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的选项是()A.2(a+b-2c)B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.假设x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.假设x,y为任意有理数,比拟6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B2.C3.C4.B5.B6.D7.A8.C9.D10.B11.C12.C13.B14.C15.D16.B17.B18.D19.A20.B21.B22.D23.C24.A25.A26.C27.C28.C29.D30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.因式分解专题过关1.将以下各式分解因式〔1〕3p2﹣6pq〔2〕2x2+8x+82.将以下各式分解因式〔1〕x3y﹣xy〔2〕3a3﹣6a2b+3ab2.3.分解因式〔1〕a2〔x﹣y〕+16〔y﹣x〕〔2〕〔x2+y2〕2﹣4x2y24.分解因式:〔1〕2x2﹣x〔2〕16x2﹣1〔3〕6xy2﹣9x2y﹣y3〔4〕4+12〔x﹣y〕+9〔x﹣y〕25.因式分解:〔1〕2am2﹣8a〔2〕4x3+4x2y+xy26.将以下各式分解因式:〔1〕3x﹣12x3〔2〕〔x2+y2〕2﹣4x2y27.因式分解:〔1〕x2y﹣2xy2+y3〔2〕〔x+2y〕2﹣y28.对以下代数式分解因式:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕〔2〕〔x﹣1〕〔x﹣3〕+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把以下各式分解因式:〔1〕x4﹣7x2+1〔2〕x4+x2+2ax+1﹣a2〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2〔4〕x4+2x3+3x2+2x+112.把以下各式分解因式:〔1〕4x3﹣31x+15;〔2〕2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;〔3〕x5+x+1;〔4〕x3+5x2+3x﹣9;〔5〕2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕3p2﹣6pq;〔2〕2x2+8x+8分析:〔1〕提取公因式3p整理即可;〔2〕先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:〔1〕3p2﹣6pq=3p〔p﹣2q〕,〔2〕2x2+8x+8,=2〔x2+4x+4〕,=2〔x+2〕2.2.将以下各式分解因式〔1〕x3y﹣xy〔2〕3a3﹣6a2b+3ab2.分析:〔1〕首先提取公因式xy,再利用平方差公式进行二次分解即可;〔2〕首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:〔1〕原式=xy〔x2﹣1〕=xy〔x+1〕〔x﹣1〕;〔2〕原式=3a〔a2﹣2ab+b2〕=3a〔a﹣b〕2.3.分解因式〔1〕a2〔x﹣y〕+16〔y﹣x〕;〔2〕〔x2+y2〕2﹣4x2y2.分析:〔1〕先提取公因式〔x﹣y〕,再利用平方差公式继续分解;〔2〕先利用平方差公式,再利用完全平方公式继续分解.解答:解:〔1〕a2〔x﹣y〕+16〔y﹣x〕,=〔x﹣y〕〔a2﹣16〕,=〔x﹣y〕〔a+4〕〔a﹣4〕;〔2〕〔x2+y2〕2﹣4x2y2,=〔x2+2xy+y2〕〔x2﹣2xy+y2〕,=〔x+y〕2〔x﹣y〕2.4.分解因式:〔1〕2x2﹣x;〔2〕16x2﹣1;〔3〕6xy2﹣9x2y﹣y3;〔4〕4+12〔x﹣y〕+9〔x﹣y〕2.分析:〔1〕直接提取公因式x即可;〔2〕利用平方差公式进行因式分解;〔3〕先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;〔4〕把〔x﹣y〕看作整体,利用完全平方公式分解因式即可.解答:解:〔1〕2x2﹣x=x〔2x﹣1〕;〔2〕16x2﹣1=〔4x+1〕〔4x﹣1〕;〔3〕6xy2﹣9x2y﹣y3,=﹣y〔9x2﹣6xy+y2〕,=﹣y〔3x﹣y〕2;〔4〕4+12〔x﹣y〕+9〔x﹣y〕2,=[2+3〔x﹣y〕]2,=〔3x﹣3y+2〕2.5.因式分解:〔1〕2am2﹣8a;〔2〕4x3+4x2y+xy2分析:〔1〕先提公因式2a,再对余下的多项式利用平方差公式继续分解;〔2〕先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:〔1〕2am2﹣8a=2a〔m2﹣4〕=2a〔m+2〕〔m﹣2〕;〔2〕4x3+4x2y+xy2,=x〔4x2+4xy+y2〕,=x〔2x+y〕2.6.将以下各式分解因式:〔1〕3x﹣12x3〔2〕〔x2+y2〕2﹣4x2y2.分析:〔1〕先提公因式3x,再利用平方差公式继续分解因式;〔2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:〔1〕3x﹣12x3=3x〔1﹣4x2〕=3x〔1+2x〕〔1﹣2x〕;〔2〕〔x2+y2〕2﹣4x2y2=〔x2+y2+2xy〕〔x2+y2﹣2xy〕=〔x+y〕2〔x﹣y〕2.7.因式分解:〔1〕x2y﹣2xy2+y3;〔2〕〔x+2y〕2﹣y2.分析:〔1〕先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;〔2〕符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:〔1〕x2y﹣2xy2+y3=y〔x2﹣2xy+y2〕=y〔x﹣y〕2;〔2〕〔x+2y〕2﹣y2=〔x+2y+y〕〔x+2y﹣y〕=〔x+3y〕〔x+y〕.8.对以下代数式分解因式:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕;〔2〕〔x﹣1〕〔x﹣3〕+1.分析:〔1〕提取公因式n〔m﹣2〕即可;〔2〕根据多项式的乘法把〔x﹣1〕〔x﹣3〕展开,再利用完全平方公式进行因式分解.解答:解:〔1〕n2〔m﹣2〕﹣n〔2﹣m〕=n2〔m﹣2〕+n〔m﹣2〕=n〔m﹣2〕〔n+1〕;〔2〕〔x﹣1〕〔x﹣3〕+1=x2﹣4x+4=〔x﹣2〕2.9.分解因式:a2﹣4a+4﹣b2.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=〔a2﹣4a+4〕﹣b2=〔a﹣2〕2﹣b2=〔a﹣2+b〕〔a﹣2﹣b〕.10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=〔a2﹣2a+1〕﹣b2=〔a﹣1〕2﹣b2=〔a﹣1+b〕〔a﹣1﹣b〕.11.把以下各式分解因式:〔1〕x4﹣7x2+1;〔2〕x4+x2+2ax+1﹣a2〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2〔4〕x4+2x3+3x2+2x+1分析:〔1〕首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;〔2〕首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;〔3〕首先把﹣2x2〔1﹣y2〕变为﹣2x2〔1﹣y〕〔1﹣y〕,然后利用完全平方公式分解因式即可求解;〔4〕首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:〔1〕x4﹣7x2+1=x4+2x2+1﹣9x2=〔x2+1〕2﹣〔3x〕2=〔x2+3x+1〕〔x2﹣3x+1〕;〔2〕x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=〔x2+1〕﹣〔x﹣a〕2=〔x2+1+x﹣a〕〔x2+1﹣x+a〕;〔3〕〔1+y〕2﹣2x2〔1﹣y2〕+x4〔1﹣y〕2=〔1+y〕2﹣2x2〔1﹣y〕〔1+y〕+x4〔1﹣y〕2=〔1+y〕2﹣2x2〔1﹣y〕〔1+y〕+[x2〔1﹣y〕]2=[〔1+y〕﹣x2〔1﹣y〕]2=〔1+y﹣x2+x2y〕2〔4〕x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2〔x2+x+1〕+x〔x2+x+1〕+x2+x+1=〔x2+x+1〕2.12.把以下各式分解因式:〔1〕4x3﹣31x+15;〔2〕2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;〔3〕x5+x+1;〔4〕x3+5x2+3x﹣9;〔全国初中〔初二〕数学竞赛辅导第一讲因式分解(一)多项式的因式分解是代数式恒等变形的根本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,开展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材根底上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过假设干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]=-2xn-1yn(x2n-y2)2=-2xn-1yn(xn-y)2(xn+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2分解因式:a3+b3+c3-3abc.此题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,此题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,那么a3+b3+c3=3abc;当a+b+c>0时,那么a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,那么有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在此题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4分解因式:x3-9x+8.分析此题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解(1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一局部看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,那么原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明此题也可将x2+x+1看作一个整体,比方今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,那么原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的根底.例8分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,那么原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由此题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10分解因式:(x2+xy+y2)-4xy(x2+y2).分析此题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,那么原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第一讲因式分解(一)多项式的因式分解是代数式恒等变形的根本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,开展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材根底上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过假设干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]=-2xn-1yn(x2n-y2)2=-2xn-1yn(xn-y)2(xn+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论