高中物理必修二知识汇总+重点题型及高中物理必修二知识点总结(人教版)_第1页
高中物理必修二知识汇总+重点题型及高中物理必修二知识点总结(人教版)_第2页
高中物理必修二知识汇总+重点题型及高中物理必修二知识点总结(人教版)_第3页
高中物理必修二知识汇总+重点题型及高中物理必修二知识点总结(人教版)_第4页
高中物理必修二知识汇总+重点题型及高中物理必修二知识点总结(人教版)_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章曲线运动知识汇总(无答案)新人教版必修2曲线速度方向:沿轨迹(1)方向运动运动条件:合外力与速度方向(2)运动的合合运动:物体的实际运动成和分解运算法测:(3)运动性质:(4)曲线运动平具有水平初速度抛运动特点运只受(4)作用动水平方向:匀速直线运动vx=v0,x=v0t运动规律竖直方向:自由落体运动,vy=gt,y=1/2gt2合运动:v=(6),s=(7)线公式:(8)=(9)速物理意义:描述物体做圆周运动的物体运动的快慢度线物关系理角v=曲运量速公式:ω=(10)=(11)(13)线度物理意义:描述物体(12)的快慢运实动周公式:T=(14)例期物理意义:描述物体沿圆周运动的快慢圆向心公式:a=(15)=(16)周加速=(17)运度物理意义:描述(18)变化的快慢动向心力公式:a=(19)=(20)Fn=man=(21) 匀速定义:(22)处处相等的圆周运动圆周特点:线速度大小(23)方向运动两个模型(绳和杆)竖直面内绳模型中过最高点的最小速度vmin=(25)的圆周运动临界条件绳模型中过最高点的最小速度vmin=(26)火车转弯生活中的圆周运动车过拱桥 航天器中的失重现象 离心现象核心归纳整合一、小船渡河问题和速度关联问题运动的合成和分解是解决曲线运动问题的有效方法,关键是找准合运动和分运动,认清物体的实际运动为合运动,其参与的运动为分运动,运动的合成和分解遵从平行四边形定则。1.小船渡河问题:处理小船渡河问题的方法是沿流水方向和垂直水流方向将小船的实际运动(合运动)进行分解,如图甲,然后根据两个方向的运动(分运动)规律解决有关问题,设河宽为d,水速为v1,船在静水中的速度为v2。θV1V2θV1V2甲(1)渡河时间:根据合运动与分运动的等时性关系可得:t=d/(v2sinθ),与水速v1无关。当θ=90。,即船头垂直河对岸时,渡河时间最短,tmin=d/v2.(2)渡河航程:渡河航程由实际运动的方向决定,当v1<v2时,如图乙,当v2cosθ=v1时,船能垂直河岸过河,此时最短航程为d;当v1>v2时,船不能垂直河岸过河,最短航程可由图丙所示方法确定,最短航程QUOTE错误!未找到引用源。。V1V2VθθV1V2V1V2VθθV1V2乙丙(3)船渡河问题规律总结:eq\o\ac(○,1)船头指向垂直河岸时,航行所用时间最短,最短时间为tminQUOTE错误!未找到引用源。=d/v2。eq\o\ac(○,2)在v1<v2时,船的运动轨迹垂直于河岸时航程最短(等于河宽),这时船头指向应斜上游。eq\o\ac(○,3)在v1>v2时,船不能垂直渡河。eq\o\ac(○,4)渡河时间与河水流速v1无关。2.速度关联问题:速度关联问题主要是指由绳子、杆一端所连接的物体的运动问题,解决这类问题的方法是运动的合成与分解,关键是分清哪个是合运动,哪个是分运动。方法总结:(1)找合速度:连接点(包括绳端、杆端或其端点所连接的物体)的实际运动是合运动。注意:沿绳或杆方向的运动一般不是合运动,只有与实际运动方向相同时才是合运动。(2)分解运动:将各端点的合速度沿绳或杆的方向及与绳或杆垂直的方向分解。(3)关联:合速度在沿绳或杆方向的分速度与绳端或杆端的速度大小和方向都相等。【典例1】已知某船在静水中的速度为v1=4m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100m,水流速度为v2=3m/s,方向与河岸平行。(1)欲使船以最短时间渡河,航向怎样?最短时间是多少?船发生的位移有多大?(2)欲使船以最小位移渡河,航向又怎样?渡河所用时间是多少?(3)若水流速度为v2=5m/s,船在静水中的速度为v1=4m/s不变,船能否垂直河岸渡河?变式训练用跨过定滑轮的绳把湖中小船向右拉到靠近岸的过程中,如图所示,如果保证绳子的速度v不变,则小船的速度()A.不变B.逐渐增大C.逐渐减小D.先增大后减小二、平抛运动的分析方法平抛运动是典型的匀变速曲线运动,它的动力学特征:水平方向有初速度和不受外力,竖直方向只受重力而无初速度。抓住平抛运动的这两个初始条件,也就抓住了它的解题关键,现将常见的几种解题方法介绍如下:利用平抛运动的时间特点解题:平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动,只要抛出的时间相同,下落的高度和竖直分速度就相同。利用平抛运动的偏转角度解题:(1)做平抛运动的物体在任一时刻、任一位置,其速度方向与水平方向的夹角θ、位移与水平方向的夹角φ,满足tanθ=2tanφ。(2)做平抛运动的物体任意时刻瞬时速度的反向延长线一定通过此时水平位移的中心,即ox’=1/2ox。3.利用平抛运动的轨迹解题:(1)定性分析:平抛运动轨迹是一条抛物线,已知抛物线抛物线上的任意一段,就可以求出水平初速度和抛出点,进而可以求其他物理量。(2)定量分析:设图为某物体做平抛运动的一段轨迹,在轨迹上任取两点A和B,分别过A点做竖直线,过B点做水平线相交于C点,然后过BC的中点D做垂线交轨迹于E点,过E点再作水平线交AC于F点,小球经过AE和EB的时间相等,设单位时间为T.由Δy=aT2知.【典例2】某同学在某砖墙前的高处水平抛出一石子,石子在空中运动的部分轨迹照片如图所示.从照片可看出石子恰好垂直打在一倾角为37°的斜坡上的A点.已知每块砖的平均厚度为20cm,抛出点到A点竖直方向刚好相距100块砖,求:(1)石子在空中运动的时间t;(2)石子水平抛出的速度v0.变式训练(多选)如图,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比a的大三、圆周运动的临界问题1、竖直平面内的临界问题;物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”“最小”等词语,常分为两种模型—“轻绳模型”和“轻杆模型”,分析比较如下:轻绳模型轻杆模型常见类型圆轨道绳r圆轨道绳r均是没有支撑的小球光滑管道杆光滑管道杆r均是有支撑的小球过最高点的临界条件由mg=m得v临=v临=0讨论分析过最高点时,V>,FN+mg=mv2/r,绳、轨道对求产生的弹力为FN。不能过最高点时,v<,在到达最高点前小球已经脱离了圆轨道。当v=0时,FN=mg,FN为支持力,沿半径背离圆心当0<v<时,,FN背离圆心,随v的增大而减小当V=时,FN=0当V>时,FN+mg=mv2/r,FN指向圆心并随v的增大而增大2、水平面内的临界问题:(1)与摩擦力有关的临界问题:1、物体间恰好不发生相互滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有Ff=mv2/r,静摩擦力的方向指向圆心。2、如果除摩擦力外还有其它力,如绳两端连接物体,其中一个物体竖直悬挂,另一个物体水平面内最做匀速圆周运动,此时恰好存在一个不向内滑动的临界条件和一个恰不向外的临界条件,静摩擦力达到最大且静摩擦力方向分别为沿沿半径背离圆心和沿半径指向圆心。(2)与弹力有关的临界问题:压力、支持力的临界条件是物体间的弹力恰好为0,绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。3、解决圆周运动临界问题的一般思路:(1)要考虑达到临界状态时物体所处的状态。(2)分析该状态下物体的受力特点。(3)结合圆周运动知识,列出相应的动力学方程分【典例3】如图,质量为0.5kg的杯子里盛有1kg的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动半径为1m,水杯通过最高点的速度为4m/s,求:(1)在最高点时,绳的拉力大小。(2)在最高点时水对杯底的压力?。(3)为使小杯经过最高点时水不流出,在最高点时的最小速率?变式训练如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.8m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小H=0.45m.物块与转台间的动摩擦因数μ=0.5,设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块落地点到转台中心的水平距离s.触摸高考1.降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞()A.下落的时间越短B.下落的时间越长C.落地时速度越小D.落地时速度越大2.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,则小球在竖直方向下落的距离与在水平方向通过的距离之比()A.B.C.D.3.如图所示,在高为h的平台边缘水平抛出小球A,同时在水平地面上距台面边缘水平距离为s处竖直上抛小球B,两球运动轨迹在同一竖直平面内,不计空气阻力,重力加速度为g。若两球能在空中相遇,则小球A的初速度VA应大于A、B两球初速度之比VA:VB为。4.如图4-2-5所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?5.如图所示是铺设水泥路面时所用的振动器的示意图,在距电动机转轴O为r处固定一质量为m的铁块,电动机转动后,铁块随电动机以角速度ω绕轴O匀速旋转,使电动机座上下振动,从而使铺设水泥路面时的砂、石和水泥浆均匀填实,而不留空隙,那么电动机转动过程中对地面产生的最大压力与最小压力之差为多大?6.如图所示,匀速转动的水平圆盘上,沿半径方向放有两个用细线相连的质量均为m的小物体A和B.它们到转动轴的距离分别为rA=20cm,rB=30cmA和B与盘面间的最大静摩擦力均为重力的,(g=10m/s2)试求:(1)当细线上开始出现张力时,求圆盘的角速度;(2)当A开始滑动时,求圆盘的角速度ω;(3)当A即将滑动时,烧断细线,A、B状态如何?7.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度也为d,手与球之间的绳长为,重力加速度为g。忽略手的运动半径和空气阻力。(1)求绳断时球的速度大小v1和球落地时的速度大小v2;(2)绳能承受的最大拉力多大;(3)改变绳长,使球重复上述运动.若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?水平距离为多少?8.“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如题图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A、B、C、D位置时球与板间无相对运动趋势.A为圆周的最高点,C为最低点,B、D与圆心O等高.若球恰能到达最高点,设球的重力为1N.求:(1)健身者在C处所需施加的力比在A处大多少?(2)设在A处时健身者需施加的力为F,当运动时B,D位置时,板与水平方向需有一定的夹角θ,请作出tanθ—F的关系图像。

第六章万有引力与航天知识汇总(无答案)新人教版必修2第一定律(轨道定律)第二定律(面积定律)第一定律(轨道定律)第二定律(面积定律)第三定律(周期定律)开普勒行星运动动定律行星的运动定律的发现定律的内容公式:引力常量:G=6.675×10-11N·m2/kg2成就万有引力定律万有引力与航天计算中心天体质量发现未知天体T=V=Ω=④an=⑤=人造地球卫星三个宇宙速度第一宇宙速度:⑥第二宇宙速度:⑦第三宇宙速度:⑧宇宙航行宇宙航行的成就经典力学的局限性:只适用于⑨、⑩的物体。地心说与日心说一、万有引力定律的综合应用万有引力定律的应用可分为两种情况:一种是在天体表面上的物体,它所受到的重力近似看作是天体对它的引力,即;另一种是绕中心天体运动的物体,其运动近似看作是匀速圆周运动,所需的向心力由万有引力提供,即。典例一如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B和O三点始终共线,A和B分别在O的两侧。引力常量为G。求两星球做圆周运动的周期。在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题是,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg,求T2与T1两者平方之比。(结果保留两位小数)变式训练在某星球上做实验,在星球表面水平放一长木板,在长木板上方一木块,木板与木块之间的动摩擦因数为μ,现用一弹簧测力计拉木块。当弹簧测力计读数为F时,经计算发现木快的加速度为a,木块质量为m,若该星球半径为R,则在该星球上发射卫星的第一宇宙速度是多少?二、人造卫星的两类运动——稳定运行和变轨运行卫星绕天体运行时,万有引力提供了卫星做圆周运动的向心力,由,得,由此可知轨道半径r越大,卫星的速度越小。当卫星由于某种原因,其速度突然变化时,F引和不再相等,因此就不能再根据来确定v的大小了。当F引>时卫星做近心运动;当F引<时,卫星做离心运动。典例二如图所示,2011年9月29日晚21时16分,我国将收割目标飞行器天宫一号发射升空。2011年11月3日凌晨神八天宫对接成功,完美完成一次天空之吻。若对接前两者在同一轨道上运动,下列说法种种正确的是()对接前“天宫一号”的运行速率大于“神州八号”的运行速率对接前“神州八号”的向心加速度小于“天宫一号”的向心加速度“神州八号”先加速可实现与“天宫一号”在原轨道上对接“神州八号”先减速后加速可实现与“天宫一号”在原轨道上对接变式训练(多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步轨道3。轨道1、2相切于A点,轨道2、3相切于B点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()卫星在轨道1上的运行速率大于轨道3上的速率卫星在轨道1上的角速度小于在轨道3上的角速度卫星在椭圆轨道2上经过A点时的速度大于7.9km/s卫星在椭圆轨道2上经过B点时的加速度等于它在轨道3上经过B点的加速度三、双星问题天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星,双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。典例三宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T1;另一种形式是有三颗星位于边长为a的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比变式训练土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动。其中有两个岩石颗粒A和B与土星中心的距离分别为rA=8.0×104km和rB=1.2×105km。忽略所有岩石颗粒间的相互作用。(结果可用根式比较)求:(1)岩石颗粒粒A和B的线速度之比岩石颗粒粒A和B的周期之比高考真题1.(多选)1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.“东方红一号”的运行轨道为椭圆轨道,其近地点M和远地点N的高度分别为439km和2384km,则()A卫星在M点的势能大于N点的势能B卫星在M点的角速度大于N点的角速度C卫星在M点的加速度大于N点的加速度D卫星在N点的速度大于7.9km/s2.(多选)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有()A在轨道Ⅱ上经过A的速度小于经过B的速度B在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度3.太阳系中的8大行星的轨道均可以近似看成圆轨道。下列4幅图是用来描述这些行星运动所遵从的某一规律的图像。图中坐标系的横轴是lg(T/T0),纵轴是lg(R/R0),这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,T0和R0分别是水星绕太阳运行的周期和相应的圆轨道半径。下列4幅图中正确的是()ABCDABCD4.火星探测项目我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。假设火星探测器在火星表面附近圆形轨道运行周期为T1,神舟飞船在地球表面附近圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1、T2之比为()5.如图,三个质点a、b、c质量分别为m1、m2、M(M>>m1,M>>m2),在c的万有引力作用下,a、b在同一平面内绕沿逆时针方向做匀速圆周运动(a在b的前方),轨道半径之比为ra:rb=1:4,则它们的周期之比Ta、Tb=,从图示位置开始,在b运动一周的过程中,三点共线了次。6.已知地球的自转周期和半径分别为T和R,地球同步卫星A的圆轨道半径为h。卫星B沿半径为r(r<h)的圆轨道在地球赤道正上方运行,其运行方向与地球自转方向相同。求:卫星B做圆周运动的周期卫星A和B连续地不能直接通讯的最长时间间隔(信号传输时间可忽略)

高中物理第七章知识汇总(无答案)新人教版必修2本章知识网络概念:力和力方向上的(1)的乘积W=Flcosɑ当0≤ɑ<90°时,W为(2)功公式当ɑ=90°时,W=(3)当90°<ɑ≤180°时,W为(4)过程量:做功的过程是(5)转化的过程特点功是标量,但是有正、负,正、负功的意义不同重力做功与重力势能的变化:WG=(6)=-ΔEP功能动能定理:W总=(7)关系机械能守恒定律:EP1+EK1=(8)机概念:功跟完成这些功所用(9)的比值械P=(10)(平均功率)能功率公式守P=(11)(平均功率或瞬时功率)定应用:机车启动时P=Fv,P为机车输出功率,F为机车牵引力律动能:EK=(12)机械能重力势能:EP=(13)机势能械能弹性势能:EP=KΔx2/2能能量守恒定律守其他形煤、石油、天然气恒式的能能源定太阳能、地热能、风能、水能、核能律探究功和速度变化的关系实验验证机械能守恒定律核心归纳整合功的正、负判断和计算方法1.如何判断力F做功的正、负(1)利用功的计算公式W=Flcosɑ。此法常用于判断恒力做功的情况。(2)利用力F与速度v之间的夹角情况来判断。设其夹角为ɑ,若0≤ɑ<90°,则力F做正功。若ɑ=90°,则力F不做功。若90°<ɑ≤180°则力F做负功。此法常用于曲线运动中功的分析。(3)从能量角度入手,此法既适用于恒力做功,也适用于变力做功,关键在于能分析清楚能量转化的情况,根据功是能量转化的量度,若有能量转化,则必有力对物体做功,如果系统机械能增加,说明外界对系统做正功,如果系统机械能减少,说明外界对系统做负功。功的计算(1)恒力做功:W=Flcosɑ,ɑ为F和l的夹角,此式适用于求解恒力所做的功。(2)变力做功:=1\*GB3①微元法:若物体在变力作用下做曲线运动,我们可以把运动过程分解成很多小段,每一小段可以认为F是恒力,用W=Flcosɑ求出每一小段内力F做的功,然后累加起来就得到整个过程中变力所作的功。=2\*GB3②图像法:如图所知在直角坐标系中,用纵轴表示作用在物体上的力F,横坐标表示在力的方向上的位移l.则图线与坐标轴包围的面积在数值上就等于功的大小。=3\*GB3③利用W=Pt求变力做功:这是一个等效替代的观点,利用W=Pt计算功时,必须满足变力的功率是一定的。=4\*GB3④转化研究对象法:通过改变研究对象化变力为恒力求功。=5\*GB3⑤利用功能关系求变力做的功:求变力所做的功,往往根据动能定理、机械能守恒定理和功能关系等规律,用能量的变化量来等效替代变力所做的功。【典例1】如图所示,斜面轨道AB与水平面之间的夹角θ=53°,BD为半径R=4m的圆弧形轨道,且B点与D点在同一水平面上,在B点,轨道AB与圆弧形轨道BD相切,整个轨道处于竖直平面内且处处光滑,在A点处的一质量m=1kg的小球由静止滑下,经过B、C点后从D点斜抛出去,最后落在地面上的S点处时的速度大小vs=8m/s,已知A点距地面的高度H=10m,B点距地面的高度h=5m,设以MDN为分界线,其左边为一阻力场区域,右边为真空区域,g取10m/s2,sin53=0.8,cos53=0.6,求

(1)小球经过B点的速度为多大?

(2)小球经过圆弧轨道最低处C点时对轨道的压力多大?

(3)小球从D点抛出后,受到的阻力f与其瞬时速度方向始终相反,求小球从D点至S点的过程中,阻力Ff所做的功.变式训练1-1(多选)如图所示,某中学科技小组制作了利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若小车在平直的公路上以初速度v0开始加速行驶,经过时间t,前进了距离l,达到最大速度vmax,设此过程电动机功率达到恒为额定功率P,所受阻力恒为Ff,则此过程中电动机所做的功为()A.FfvmaxtB.PtC.D.二、功能关系功和能关系:做功的过程就是能量转化的过程,做了多少功就有多少能量转化,所以功是能量转化的量度。几种典型的功能关系:(1)物体重力势能的增量由重力做的功来度量:WG=-ΔEP(2)物体机械能的增量由重力和弹力以外的其他力做的功来量度:W其他=ΔE机(W其他表示除重力、弹力以外的其他力做的功)(3)物体动能的增量由合外力做的总功来量度:W总=ΔEk,这就是动能定理。【典例2】如图所示,在竖直平面内有一个半径为R的圆弧轨道。半径OA水平、OB竖直,一个质量为m的小球自A正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力,已知PA=2R,重力加速度为g,则小球从P到B的运动过程中()A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功变式训练2-1(多选)升降机地板上放有一质量为100kg的物体,物体随升降机由静止开始竖直向上移动5m时速度达到4m/s,则此过程中()升降机对物体做功5800J合外力对物体做功5800JC.物体的重力势能增加5000JD.物体的机械能增加5000J摩擦力做功特点静摩擦力做功特点:(1)静摩擦力对物体可以做正功、负功,还可以不做功。(2)在静摩擦力做功的过程中,只有机械能从一个物体转移到两一个物体(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。(3)相互摩擦系统,一对静摩擦力所做的功的代数和总等于零。滑动摩擦力做功特点:(1)滑动摩擦力对物体可以做正功、负功,还可以不做功(如相对运动的物体之一相对地面静止,滑动摩擦力对该物体不做功)。(2)一对滑动摩擦力在做功的过程中,能量转化和转移的情况:一是相互摩擦的物体通过摩擦力做功,将部分机械能从一个物体转移到另一个物体;二是部分机械能转化为内能,此部分能量就是机械能损失的能量。(3)在相互摩擦的物体系统中,一对相互的滑动摩擦力所做功的代数和总是负值,其绝对值等于滑动摩擦力与相对路程的乘积,即Wf=Ff·x相对,表示物体克服了摩擦力做功,系统损失机械能,转变成内能,即ΔE损=Ff·x相对=Q热(摩擦生热)。【典例3】电动机带动水平传送带以速度v匀速运动,一质量为m的小木块由静止轻放在传送带上,若小木块与传送带之间的摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求小木块的位移;传送带转动的路程;小木块获得的动能摩擦过程产生的内能;因传送小木块,电动机多输出多少能量?高考真题:1.(多选)如图所示,倾角θ=30°的粗糙斜面固定在地面上,长为l、质量为、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平,用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面)在此过程中()A.物块的机械能逐渐增加B.软绳重力势能共减少了mglC.物块重力势能的减少等于软绳克服摩擦力所做的功D.软绳重力势能的减少小于其动能的增加与克服摩擦力所做功之和2.如图甲所示,质量不计的弹簧竖直固定在水平面上,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复。通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力随时间变化的图像如图(乙)如示,则()A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能3如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角=37°,运动员的质量m=50kg。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g取10m/s2)求:(1)A点与O点的距离;(2)运动员离开O点时的速度大小;(3)运动员落到A点时的动能。4.如图所示,四分之一圆轨道OA与水平轨道AB相切,它们与另一水平水平轨道CD在同一竖直平面内,圆轨道OA的半径R=0.45m,水平轨道AB长S1=3m,OA与AB均光滑。一滑块从O点由静止释放,当滑块经过A点时,静止在CD上的小车在F=1.6N的水平恒力作用下启动,运动一段时间后撤去F。当小车在CD上运动了S2=3.28m时速度v=2.4m/s,此时滑块恰好落入小车中。已知小车质量M=0.2kg,与CD间的动摩擦因数μ=0.4。(取g=10m/)求(1)恒力F的作用时间t.(2)AB与CD的高度差h。5.如图甲所示,一质量为m=1kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块在按如图乙所示规律变化的水平力F的作用下向右运动,第3s末物块运动到B点且速度刚好为0,第5s末物块刚好回到A点,物块与粗糙水平面间的动摩擦因数μ=0.2,g取10m/s2,求:A与B间的距离;水平力F在5s内对物块所做的功6.总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图,试根据图象求:(g取10m/s2)(1)t=1s时运动员的加速度和所受阻力的大小;(2)估算14s内运动员下落的高度;(3)估算运动员从飞机上跳下到着地的总时间。7.如图所示,一工件置于水平地面上,其AB段为一半径R=1.0m的光滑圆弧轨道,BC段为一长度L=0.5m的粗糙水平轨道,二者相切于B点,整个轨道位于同一竖直平面内,P点为圆弧轨道上的一个确定点.一可视为质点的物块,其质量m=0.2kg,与BC间的动摩擦因数μ1=0.4.工件质量M=0.8kg,与地面间的动摩擦因数μ2=0.1。(取g=10m/s2)(1)若工件固定,将物块由P点无初速度释放,滑至C点时恰好静止,求P、C两点间的高度差h。(2)若将一水平恒力F作用于工件,使物块在P点与工件保持相对静止,一起向左做匀加速直线运动。①求F的大小。②当速度v=5m/s时,使工件立刻停止运动(即不考虑减速的时间和位移),物块飞离圆弧轨道落至BC段,求物块的落点与B点间的距离。第五章平抛运动§5-1曲线运动&运动的合成与分解曲线运动1.定义:物体运动轨迹是曲线的运动。2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。②运动类型:变速运动(速度方向不断变化)。③F合≠0,一定有加速度a。④F合方向一定指向曲线凹侧。⑤F合可以分解成水平和竖直的两个力。运动描述——蜡块运动PP蜡块的位置vvxvy涉及的公式:θ运动的合成与分解合运动与分运动的关系:等时性、独立性、等效性、矢量性。互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a合为分运动的加速度。③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。有关“曲线运动”的两大题型小船过河问题vv水v船θ,ddvv水v船θ,ddvv水v船θ当v水<v船时,xmin=d,,AAv水v船θ当v水>v船时,,,θv船d[触类旁通]1.(2011年上海卷)如图5-4所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进.此过程中绳始终与水面平行,当绳与河岸的夹角为α时,船的速率为(C)。解析:依题意,船沿着绳子的方向前进,即船的速度总是沿着绳子的,根据绳子两端连接的物体在绳子方向上的投影速度相同,可知人的速度v在绳子方向上的分量等于船速,故v船=vcosα,C正确.2.(2011年江苏卷)如图5-5所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为(C)A.t甲<t乙B.t甲=t乙C.t甲>t乙D.无法确定解析:设游速为v,水速为v0,OA=OB=l,则t甲=eq\f(l,v+v0)+eq\f(l,v-v0);乙沿OB运动,乙的速度矢量图如图4所示,合速度必须沿OB方向,则t乙=2·eq\f(l,\r(v2-v\o\al(2,0))),联立解得t甲>t乙,C正确.绳杆问题(连带运动问题)1、实质:合运动的识别与合运动的分解。2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;②沿绳(或杆)方向的分速度大小相等。模型四:如图甲,绳子一头连着物体B,一头拉小船A,这时船的运动方向不沿绳子。BBOOAvAθv1v2vA甲乙处理方法:如图乙,把小船的速度vA沿绳方向和垂直于绳的方向分解为v1和v2,v1就是拉绳的速度,vA就是小船的实际速度。[触类旁通]如图,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下列说法正确的是(C)A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>v1C.物体做加速运动,且v2<v1D.物体做减速运动,且v2<v1解析:汽车向左运动,这是汽车的实际运动,故为汽车的合运动.汽车的运动导致两个效果:一是滑轮到汽车之间的绳变长了;二是滑轮到汽车之间的绳与竖直方向的夹角变大了.显然汽车的运动是由沿绳方向的直线运动和垂直于绳改变绳与竖直方向的夹角的运动合成的,故应分解车的速度,如图,沿绳方向上有速度v2=v1sinθ.由于v1是恒量,而θ逐渐增大,所以v2逐渐增大,故被吊物体做加速运动,且v2<v1,C正确.§5-2平抛运动&类平抛运动一、抛体运动1.定义:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它的运动即为抛体运动。2.条件:①物体具有初速度;②运动过程中只受G。二、平抛运动1.定义:如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。2.条件:①物体具有水平方向的加速度;②运动过程中只受G。位移:速度:,位移:速度:,,,推论:①从抛出点开始,任意时刻速度偏向角θ的正切值等于位移偏向角φ的正切值的两倍。证明如下:,tanθ=tanα=2tanφ。②从抛出点开始,任意时刻速度的反向延长线对应的水平位移的交点为此水平位移的中点,即如果物体落在斜面上,则位移偏向角与斜面倾斜角相等。4.规律:αα[牛刀小试]如图为一物体做平抛运动的x-y图象,物体从O点抛出,x、y分别表示其水平位移和竖直位移.在物体运动过程中的某一点P(a,b),其速度的反向延长线交于x轴的A点(A点未画出),则OA的长度为(B)A.aB.0.5aC.0.3aD.无法确定解析:作出图示(如图5-9所示),设v与竖直方向的夹角为α,根据几何关系得tanα=eq\f(v0,vy)①,由平抛运动得水平方向有a=v0t②,竖直方向有b=eq\f(1,2)vyt③,由①②③式得tanα=eq\f(a,2b),在Rt△AEP中,AE=btanα=eq\f(a,2),所以OA=eq\f(a,2).5.应用结论——影响做平抛运动的物体的飞行时间、射程及落地速度的因素飞行时间:,t与物体下落高度h有关,与初速度v0无关。水平射程:由v0和h共同决定。落地速度:,v由v0和vy共同决定。处理方法:1.沿水平方向的匀速运动和竖直方向的自由落体运动;2.沿斜面方向的匀加速运动和垂直斜面方向的竖直上抛运动。处理方法:1.沿水平方向的匀速运动和竖直方向的自由落体运动;2.沿斜面方向的匀加速运动和垂直斜面方向的竖直上抛运动。考点一:物体从A运动到B的时间:根据考点二:B点的速度vB及其与v0的夹角α:考点三:A、B之间的距离s:模型一:斜面问题:[触类旁通](2010年全国卷Ⅰ)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图5-10中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为(D)解析:如图5所示,平抛的末速度与竖直方向的夹角等于斜面倾角θ,有tanθ=eq\f(v0,gt),则下落高度与水平射程之比为eq\f(y,x)=eq\f(\f(1,2)gt2,v0t)=eq\f(gt,2v0)=eq\f(1,2tanθ),D正确.思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。例:如图1所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)(1)设击球点在3m线正上方高度为2.5m处,试问击球的速度在什么范围内才能使球即不触网也不越界?思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。例:如图1所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)(1)设击球点在3m线正上方高度为2.5m处,试问击球的速度在什么范围内才能使球即不触网也不越界?(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?考点一:沿初速度方向的水平位移:根据考点二:入射的初速度:考点三:P到Q的运动时间:考点一:沿初速度方向的水平位移:根据考点二:入射的初速度:考点三:P到Q的运动时间:[综合应用](2011年海南卷)如图所示,水平地面上有一个坑,其竖直截面为半圆,ab为沿水平方向的直径.若在a点以初速度v0沿ab方向抛出一小球,小球会击中坑壁上的c点.已知c点与水平地面的距离为坑半径的一半,求坑的半径。解:设坑的半径为r,由于小球做平抛运动,则x=v0t①y=0.5r=eq\f(1,2)gt2②过c点作cd⊥ab于d点,则有Rt△acd∽Rt△cbd可得cd2=ad·db即为(eq\f(r,2))2=x(2r-x)③又因为x>r,联立①②③式解得r=eq\f(47-4\r(,3),g)veq\o\al(2,0).§5-3圆周运动&向心力&生活中常见圆周运动一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:三种常见的转动装置及其特点:ABr2r1rRABr2r1rROBAAABOrRO[触类旁通]1、一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A的运动半径较大,则(AC)A.A球的角速度必小于B球的角速度B.A球的线速度必小于B球的线速度C.A球的运动周期必大于B球的运动周期D.A球对筒壁的压力必大于B球对筒壁的压力解析:小球A、B的运动状态即运动条件均相同,属于三种模型中的皮带传送。则可以知道,两个小球的线速度v相同,B错;因为RA>RB,则ωA<ωB,TA<TB,A.C正确;又因为两小球各方面条件均相同,所以,两小球对筒壁的压力相同,D错。所以A、C正确。2、两个大轮半径相等的皮带轮的结构如图所示,AB两点的半径之比为2:1,CD两点的半径之比也为2:1,则ABCD四点的角速度之比为1∶1∶2∶2,这四点的线速度之比为2∶1∶4∶2。二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。注:并不是任何情况下,向心加速度的方向都是指向圆心。当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。向心加速度只改变线速度的方向而非大小。3.意义:描述圆周运动速度方向方向改变快慢的物理量。4.公式:OOOOananrrv一定ω一定AB[触类旁通]1、如图所示的吊臂上有一个可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩。在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起。A、B之间的距离以d=H-2t2ABA.速度大小不变的曲线运动B.速度大小增加的曲线运动C.加速度大小方向均不变的曲线运动D.加速度大小方向均变化的曲线运动2、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;(2)小球落地点C与B点水平距离为多少。三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。2.方向:总是指向圆心。3.公式:4.几个注意点:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。③描述做匀速圆周运动的物体时,不能说该物体受向心力,而是说该物体受到什么力,这几个力的合力充当或提供向心力。四、变速圆周运动的处理方法1.特点:线速度、向心力、向心加速度的大小和方向均变化。2.动力学方程:合外力沿法线方向的分力提供向心力:。合外力沿切线方向的分力产生切线加速度:FT=mωaT。离心运动:当物体实际受到的沿半径方向的合力满足F供=F需=mω2r时,物体做圆周运动;当F供<F需=mω2r时,物体做离心运动。离心运动并不是受“离心力”的作用产生的运动,而是惯性的表现,是F供<F需的结果;离心运动也不是沿半径方向向外远离圆心的运动。圆周运动的典型类型类型受力特点图示最高点的运动情况用细绳拴一小球在竖直平面内转动绳对球只有拉力①若F=0,则mg=eq\f(mv2,R),v=eq\r(gR)②若F≠0,则v>eq\r(gR)小球固定在轻杆的一端在竖直平面内转动杆对球可以是拉力也可以是支持力①若F=0,则mg=eq\f(mv2,R),v=eq\r(gR)②若F向下,则mg+F=meq\f(v2,R),v>eq\r(gR)③若F向上,则mg-F=eq\f(mv2,R)或mg-F=0,则0≤v<eq\r(gR)小球在竖直细管内转动管对球的弹力FN可以向上也可以向下依据mg=eq\f(mv\o\al(2,0),R)判断,若v=v0,FN=0;若v<v0,FN向上;若v>v0,FN向下球壳外的小球在最高点时弹力FN的方向向上①如果刚好能通过球壳的最高点A,则vA=0,FN=mg②如果到达某点后离开球壳面,该点处小球受到壳面的弹力FN=0,之后改做斜抛运动,若在最高点离开则为平抛运动六、有关生活中常见圆周运动的涉及的几大题型分析解题步骤:①明确研究对象;②定圆心找半径;③对研究对象进行受力分析;④对外力进行正交分解;⑤列方程:将与和物体在同一圆周运动平面上的力或其分力代数运算后,另得数等于向心力;⑥解方程并对结果进行必要的讨论。典型模型:I、圆周运动中的动力学问题谈一谈:圆周运动问题属于一般的动力学问题,无非是由物体的受力情况确定物体的运动情况,或者由物体的运动情况求解物体的受力情况。解题思路就是,以加速度为纽带,运用那个牛顿第二定律和运动学公式列方程,求解并讨论。a、涉及公式:①②,由①②得:a、涉及公式:①②,由①②得:。b、分析:设转弯时火车的行驶速度为v,则:若v>v0,外轨道对火车轮缘有挤压作用;若v<v0,内轨道对火车轮缘有挤压作用。FFNF合mghLa、涉及公式:a、涉及公式:,所以当,此时汽车处于失重状态,而且v越大越明显,因此汽车过拱桥时不宜告诉行驶。b、分析:当:,汽车对桥面的压力为0,汽车出于完全失重状态;,汽车对桥面的压力为。,汽车将脱离桥面,出现飞车现象。c、注意:同样,当汽车过凹形桥底端时满足,汽车对桥面的压力将大于汽车重力,汽车处于超重状态,若车速过大,容易出现爆胎现象,即也不宜高速行驶。模型二:汽车过拱桥问题:[触类旁通]1、铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的倾角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则(A)A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于D.这时铁轨对火车的支持力大于解析:当内外轨对轮缘没有挤压时,物体受重力和支持力的合力提供向心力,此时速度为。如图所示,质量为m的物体从半径为R的半球形碗边向碗底滑动,滑倒最低点时的速度为v。若物体滑倒最低点时受到的摩擦力是f,则物体与碗的动摩擦因数μ为(B)。A、B、C、D、解析:设在最低点时,碗对物体的支持力为F,则,解得,由f=μF解得,化简得,所以B正确。II、圆周运动的临界问题常见竖直平面内圆周运动的最高点的临界问题谈一谈:竖直平面内的圆周运动是典型的变速圆周运动。对于物体在竖直平面内做变速圆周运动的问题,中学物理只研究问题通过最高点和最低点的情况,并且经常出现有关最高点的临界问题。(注意:绳对小球只能产生沿绳收缩方向的拉力.)(注意:绳对小球只能产生沿绳收缩方向的拉力.)(1)临界条件:小球到达最高点时,绳子的拉力或单轨的弹力刚好等于0,小球的重力提供向心力。即:。小球能过最高点的条件:,绳对球产生向下的拉力或轨道对球产生向下的压力。小球不能过最高点的条件:(实际上球还没到最高点时就脱离了轨道)。vvvvO绳OR模型四:轻杆约束、双轨约束条件下,小球过圆周最高点:杆Ov杆Ov甲v乙③当时,FN=0;④当时,轻杆对小球有指向圆心的拉力,其大小随速度的增大而增大。如图乙所示的小球过最高点时,光滑双轨对小球的弹力情况:①当v=0时,轨道的内壁下侧对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;②当时,轨道的内壁下侧对小球仍有竖直向上的支持力FN,大小随小球速度的增大而减小,其取值范围是;③当时,FN=0;④当时,轨道的内壁上侧对小球有竖直向下指向圆心的弹力,其大小随速度的增大而增大。(1)临界条件:由于轻杆和双轨的支撑作用,小球恰能到达最高点的临街速度(2)如图甲所示的小球过最高点时,轻杆对小球的弹力情况:①当v=0时,轻杆对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;②当时,轻杆对小球的支持力的方向竖直向上,大小随小球速度的增大而减小,其取值范围是;两种情况:(1)若使物体能从最高点沿轨道外侧下滑,物体在最高点的速度v的限制条件是(2)若两种情况:(1)若使物体能从最高点沿轨道外侧下滑,物体在最高点的速度v的限制条件是(2)若,物体将从最高电起,脱离圆轨道做平抛运动。[触类旁通]1、如图所示,质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取10m/s2,求:(1)在最高点时,绳的拉力?babaO(3)为使小杯经过最高点时水不流出,在最高点时最小速率是多少?答案:(1)9N,方向竖直向下;(2)6N,方向竖直向上;(3)m/s=3.16m/s2、如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使其做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是(AB)QPQPMOLAFC.a处为推力,b处为拉力D.a处为推力,b处为推力如图所示,LMPQ是光滑轨道,LM水平,长为5m,MPQ是一半径R=1.6m的半圆,QOM在同一竖直面上,在恒力F作用下,质量m=1kg的物体A从L点由静止开始运动,当达到M时立即停止用力,欲使A刚好能通过Q点,则力F大小为多少?(取g=10m/s2)解析:物体A经过QPQPMmgFNO由牛顿第二定律得:物体A刚好过A时有FN=0;解得,对物体从L到Q全过程,由动能定理得:,解得F=8N。B.物体在水平面内做圆周运动的临界问题谈一谈:在水平面内做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动(半径变化)的趋势。这时要根据物体的受力情况判断物体所受的某个力是否存在以及这个力存在时方向如何(特别是一些接触力,如静摩擦力、绳的拉力等)。处理方法:先对A进行受力分析,如图所示,注意在分析时不能忽略摩擦力,当然,如果说明盘面为光滑平面,摩擦力就可以忽略了。受力分析完成后,可以发现支持力N与mg相互抵销,则只有f充当该物体的向心力,则有,接着可以求的所需的圆周运动参数等。O处理方法:先对A进行受力分析,如图所示,注意在分析时不能忽略摩擦力,当然,如果说明盘面为光滑平面,摩擦力就可以忽略了。受力分析完成后,可以发现支持力N与mg相互抵销,则只有f充当该物体的向心力,则有,接着可以求的所需的圆周运动参数等。OANmgf等效为OBR等效处理:等效处理:O可以看作一只手或一个固定转动点,B绕着O经长为R的轻绳或轻杆的牵引做着圆周运动。还是先对B进行受力分析,发现,上图的f在此图中可等效为绳或杆对小球的拉力,则将f改为F拉即可,根据题意求出F拉,带入公式,即可求的所需参量。【综合应用】1、如图所示,按顺时针方向在竖直平面内做匀速转动的轮子其边缘上有一点A,当A通过与圆心等高的a处时,有一质点B从圆心O处开始做自由落体运动.已知轮子的半径为R,求:(1)轮子的角速度ω满足什么条件时,点A才能与质点B相遇?(2)轮子的角速度ω′满足什么条件时,点A与质点B的速度才有可能在某时刻相同?解析:(1)点A只能与质点B在d处相遇,即轮子的最低处,则点A从a处转到d处所转过的角度应为θ=2nπ+eq\f(3,2)π,其中n为自然数.由h=eq\f(1,2)gt2知,质点B从O点落到d处所用的时间为t=eq\r(\f(2R,g)),则轮子的角速度应满足条件ω=eq\f(θ,t)=(2n+eq\f(3,2))πeq\r(\f(g,2R)),其中n为自然数.(2)点A与质点B的速度相同时,点A的速度方向必然向下,因此速度相同时,点A必然运动到了c处,则点A运动到c处时所转过的角度应为θ’=2nπ+π,其中n为自然数.转过的时间为此时质点B的速度为vB=gt′,又因为轮子做匀速转动,所以点A的速度为vA=ω′R由vA=vB得,轮子的角速度应满足条件,其中n为自然数.2、(2009年高考浙江理综)某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如下图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟.已知赛车质量m=0.1kg,通电后以额定功率P=1.5W工作,进入竖直轨道前受到的阻力恒为0.3N,随后在运动中受到的阻力均可不记.图中L=10.00m,R=0.32m,h=1.25m,x=1.50m.问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)解析:设赛车越过壕沟需要的最小速度为v1,由平抛运动的规律x=v1t,h=eq\f(1,2)gt2,解得:v1=xeq\r(\f(R,2h))=3m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v2,最低点的速度为v3,由牛顿第二定律及机械能守恒定律得mg=meq\f(v\o\al(2,2),R),eq\f(1,2)mveq\o\al(2,3)=eq\f(1,2)mveq\o\al(2,2)+mg(2R)解得v3=eq\r(5gh)=4m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是vmin=4m/s设电动机工作时间至少为t,根据功能关系Pt-FfL=eq\f(1,2)mveq\o\al(2,min),由此可得t=2.53s.3、如下图所示,让摆球从图中A位置由静止开始下摆,正好到最低点B位置时线被拉断.设摆线长为L=1.6m,摆球的质量为0.5kg,摆线的最大拉力为10N,悬点与地面的竖直高度为H=4m,不计空气阻力,g取10m/s2。求:(1)摆球着地时的速度大小.(2)D到C的距离。解析:(1)小球刚摆到B点时,由牛顿第二定律可知:①,由①并带入数据可解的:,小球离开B后,做平抛运动.竖直方向:②,落地时竖直方向的速度:③落地时的速度大小:④,由①②③④得:落地点D到C的距离第六章万有引力与航天§6-1开普勒定律一、两种对立学说(了解)1.地心说:(1)代表人物:托勒密;(2)主要观点:地球是静止不动的,地球是宇宙的中心。2.日心说:(1)代表人物:哥白尼;(2)主要观点:太阳静止不动,地球和其他行星都绕太阳运动。二、开普勒定律1.开普勒第一定律(轨道定律):所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。2.开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。此定律也适用于其他行星或卫星绕某一天体的运动。3.开普勒第三定律(周期定律):所有行星轨道的半长轴R的三次方与公转周期T的二次方的比值都相同,即值是由中心天体决定的。通常将行星或卫星绕中心天体运动的轨道近似为圆,则半长轴a即为圆的半径。我们也常用开普勒三定律来分析行星在近日点和远日点运动速率的大小。[牛刀小试]1、关于“地心说”和“日心说”的下列说法中正确的是(AB)。A.地心说的参考系是地球B.日心说的参考系是太阳C.地心说与日心说只是参考系不同,两者具有等同的价值D.日心说是由开普勒提出来的2、开普勒分别于1609年和1619年发表了他发现的行星运动规律,后人称之为开普勒行星运动定律。关于开普勒行星运动定律,下列说法正确的是(B)A.所有行星绕太阳运动的轨道都是圆,太阳处在圆心上B.对任何一颗行星来说,离太阳越近,运行速率就越大C.在牛顿发现万有引力定律后,开普勒才发现了行星的运行规律D.开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运动规律等全部工作§6-2万有引力定律一、万有引力定律1.月—地检验:①检验人:牛顿;②结果:地面物体所受地球的引力,与月球所受地球的引力都是同一种力。2.内容:自然界的任何物体都相互吸引,引力方向在它们的连线上,引力的大小跟它们的质量m1和m2乘积成正比,跟它们之间的距离的平方成反比。3.表达式:,4.使用条件:适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也可用此公式计算,其中r指球心间的距离。5.四大性质:①普遍性:任何客观存在的有质量的物体之间都存在万有引力。②相互性:两个物体间的万有引力是一对作用力与反作用力,满足牛顿第三定律。③宏观性:一般万有引力很小,只有在质量巨大的星球间或天体与天体附近的物体间,其存在才有意义。④特殊性:两物体间的万有引力只取决于它们本身的质量及两者间的距离,而与它们所处环境以及周围是否有其他物体无关。6.对G的理解:①G是引力常量,由卡文迪许通过扭秤装置测出,单位是。②G在数值上等于两个质量为1kg的质点相距1m时的相互吸引力大小。③G的测定证实了万有引力的存在,从而使万有引力能够进行定量计算,同时标志着力学实验精密程度的提高,开创了测量弱相互作用力的新时代。[牛刀小试]1、关于万有引力和万有引力定律理解正确的有(B)A.不可能看作质点的两物体之间不存在相互作用的引力B.可看作质点的两物体间的引力可用F=计算C.由F=知,两物体间距离r减小时,它们之间的引力增大,紧靠在一起时,万有引力非常大D.引力常量的大小首先是由卡文迪许测出来的,且等于6.67×10-11N·m2/kg22、下列说法中正确的是(ACD)A.总结出关于行星运动三条定律的科学家是开普勒B.总结出万有引力定律的物理学家是伽俐略C.总结出万有引力定律的物理学家是牛顿D.第一次精确测量出万有引力常量的物理学家是卡文迪许7.万有引力与重力的关系:(1)“黄金代换”公式推导:当时,就会有。(2)注意:①重力是由于地球的吸引而使物体受到的力,但重力不是万有引力。②只有在两极时物体所受的万有引力才等于重力。③重力的方向竖直向下,但并不一定指向地心,物体在赤道上重力最小,在两极时重力最大。④随着纬度的增加,物体的重力减小,物体在赤道上重力最小,在两极时重力最大。⑤物体随地球自转所需的向心力一般很小,物体的重力随纬度的变化很小,因此在一般粗略的计算中,可以认为物体所受的重力等于物体所受地球的吸引力,即可得到“黄金代换”公式。[牛刀小试]设地球表面的重力加速度为g0,物体在距地心4R(R为地球半径)处,由于地球的作用而产生的重力加速度为g,则g∶g0为(D)A.16∶1 B.4∶1 C.1∶4 D.1∶168.万有引力定律与天体运动:运动性质:通常把天体的运动近似看成是匀速圆周运动。从力和运动的关系角度分析天体运动:天体做匀速圆周运动运动,其速度方向时刻改变,其所需的向心力由万有引力提供,即F需=F万。如图所示,由牛顿第二定律得:,从运动的角度分析向心加速度:重要关系式:[牛刀小试]1、两颗球形行星A和B各有一颗卫星a和b,卫星的圆形轨道接近各自行星的表面,如果两颗行星的质量之比,半径之比=q,则两颗卫星的周期之比等于。地球绕太阳公转的角速度为ω1,轨道半径为R1,月球绕地球公转的角速度为ω2,轨道半径为R2,那么太阳的质量是地球质量的多少倍?解析:地球与太阳的万有引力提供地球运动的向心力,月球与地球的万有引力提供月球运动的向心力,最后算得结果为。3、假设火星和地球都是球体,火星的质量M1与地球质量M2之比=p;火星的半径R1与地球的半径R2之比=q,那么火星表面的引力加速度g1与地球表面处的重力加速度g2之比等于(A)A. B.pq2 C. D.pq9.计算大考点:“填补法”计算均匀球体间的万有引力:谈一谈:万有引力定律适用于两质点间的引力作用,对于形状不规则的物体应给予填补,变成一个形状规则、便于确定质点位置的物体,再用万有引力定律进行求解。模型:如右图所示,在一个半径为R,质量为M的均匀球体中,紧贴球的边缘挖出一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?思路分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可求解。根据“思路分析”所述,引力F可视作F=F1+F2:,,则挖去小球后的剩余部分对球外质点m的引力为。[能力提升]某小报登载:×年×月×日,×国发射了一颗质量为100kg,周期为1h的人造环月球卫星。一位同学记不住引力常量G的数值且手边没有可查找的材料,但他记得月球半径约为地球的eq\f(1,4),月球表面重力加速度约为地球的eq\f(1,6),经过推理,他认定该报道是则假新闻,试写出他的论证方案。(地球半径约为6.4×103km)证明:因为Geq\f(Mm,R2)=meq\f(4π2,T2)R,所以T=2πeq\r(\f(R3,GM)),又Geq\f(Mm,R2)=mg得g=eq\f(GM,R2),故Tmin=2πeq\r(\f(R3,GM))=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论