Capgemini-技术愿景2024-推动未来_第1页
Capgemini-技术愿景2024-推动未来_第2页
Capgemini-技术愿景2024-推动未来_第3页
Capgemini-技术愿景2024-推动未来_第4页
Capgemini-技术愿景2024-推动未来_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EXECUTIVECOMPANION

/PromptWhatwillsmarttechnologyinthefuturelooklike?

TECHNO

VISION2024/Promptthefuture

07

08

10

11

13

15

2TechnoVision2024:ExecutiveCompanion

TABLEOF

CONTENTS

INTRODUCTION

WHICHTECHNOLOGY(MEGA)TRENDSWILLSEE

INFLECTIONPOINTSIN2024?

GenerativeArtificialIntelligence–SmallWillBetheNewBig

QuantumTechnology–WhenCyberMeetsQuantum

Semiconductors–Moore’sLawIsn’tDead,ButItIsChanging

Batteries–ThePowerofNewChemistry

SpaceTech–AddressingtheEarth’sChallengesfromOuterSpace

Beyond2024–OtherTechnologiesShapingtheNext5Years

TECHNOVISION2024SUMMARIZED

TECHNOVISION2024:WHAT’SNEW?

FURTHERRESEARCH

05

06

07

08

10

11

13

15

16

19

22

3

/PromptWhatwillsmarttechnologyinthefuturelooklike?

4TechnoVision2024:ExecutiveCompanion

INTRODUCTION

Thequote“Weshapeourtechnologiesandafterwardsourtechnologiesshapeus”

echoesWinstonChurchill’sfamouswordsduringthereconstructionoftheCommons

Chamberin1943,afteritsdestructionbyincendiarybombsintheBlitz.Churchill,

emphasizingthesignificanceoftheChamber’sadversarialrectangularpattern,believedthatitsshapewascrucialforBritain’stwo-partysystemandparliamentarydemocracy.

Similarly,wecouldarguethatweareinevitablyshapedbythetechnologieswecreate.Technology’sprimaryroleistoaugmentandenhancehumanabilities,a

traitdistinguishinghumansfrommostmammals.However,weoftenoverlookhow

technology,inturn,influencesourbehavior,organizations,andsociety.Acriticalquestionarises:Howwilltechnologyshapeourworldin2024andbeyond?

Forover15yearsnow,Capgemini’sTechnoVisionhasbeenexploringthisquestionbut

sofarithasmainlyfocusedonITTrends.ThisyearwedecidedtoaddacompaniontoourTechnoVisionfullreport,takingawiderviewoftechnologiesthataremovingtheworld.

Overall,ourintentisnottobuildfuturisticforecasts;weseeTechnoVisionasatooltofacilitatestrategicdialoguebetweentechnologistsandbusinessleaders,helpingtoidentifyprioritiesandopportunitiesforbusinessoperationsanddigitalsystemsdevelopment.

TechnoVisionaimstobetheguiding‘NorthStar’inthedualtransformationtowardsadigitalandsustainableeconomy.Thisjourneyinvolvesnumeroustechnologicalandbusinessdecisions,mademorecomplexbytheurgentneedforstrategicchoicesthatmightseemsimpleatfirstglancebutoftenhavefar-reachingimplications.

GenerativeAI,whichtooktheworldbystormin2023,isexpectedtocontinueshapingthefuture.Alongsidethis,severalotherkeytechnologymegatrendsarecriticalfor

decision-makersplanningforthefuture.Thisisthestartingpointofourdiscussion,leadingtothe37trendsoutlinedinTechnoVision2024.Together,thesetrendswillprovideinsightsforshapingthefutureanddeterminingthenecessary‘prompts’fororganizationsin2024toturntheirvisionsintoreality.

MICHIELBOREEL

ExecutiveVicePresidentand

GlobalChiefTechnologyOfficeratSogeti,partofCapgemini

PASCALBRIER

GroupChiefInnovationOfficer

andmemberoftheGlobal

ExecutiveCommittee

5

WHICHTECHNOLOGY

(MEGA)TRENDSWILLSEE

INFLECTIONPOINTSIN2024?

Whenitcomestoshapingthefuture,alltechnologytrendsmightholdequalsignificance,asforecastingisoftenachallenging,ifnotanimpossibletask.However,certaintrendsemergeasmoreprominentdueto

theiranticipatedsubstantialimpactandtheexpectationofsignificantbreakthroughsinthenearfuture.

Wehavepinpointedfivesuchprominenttechnologymegatrendsthatshouldhaveinflectionpointsin2024:

GenerativeArtificialIntelligence–Smallwillbethenewbig

QuantumTechnology–WhencybermeetsQuantum

Semiconductors–Moore’sLawisn’tdead,butitischanging

Batteries–Thepowerofnewchemistry

SpaceTech–Addressingtheearth’schallengesfromouterspace

6TechnoVision2024:ExecutiveCompanion

GENERATIVEAI–SMALL

WILLBETHENEWBIG

In2024,willGenerativeAIliveuptothemassiveamountofhypeithasgenerated?Theshortanswerisyes.

GenerativeAIhasmadeacrashingentranceintheglobal

technologyandbusinessconversationinlate2022and2023,withexpectationsofsignificantbusinessimpact.

Butthispopularityalsohighlightedsomeofthedrawbacksofgeneral-purposeLargeLanguageModels(LLMs).Onenotableproblemhasbeenthetendencyofsomeofthesemodelsto

‘hallucinate’,inotherwords,tooccasionallyproduceoutputsthatareunexpected,irrelevant,nonsensical,ordisconnectedfromtheinputtheyreceived.In2023,thesolutionhasmostlybeentobuildbiggerandbiggermodels,withmoredata,moreparameters,andmorecomputingpowerbehindthem.But

thistrendisnotinfinitelysustainable,norisitsuitedforallusecases.

WhilecurrentLLMswillcontinuetothrive,thereisalso

anincreasingneedforsmaller,morecost-efficient,and

specializedmodels.Forexample,wewillseesector-specificmodelsforadvancedusecasesinmedicine,engineering,

education,andmanyothers.Wecanalsoanticipatedomain-specificmodels,tailoredforspecifictasks(likeadvanced

codingassistants).Thesemodelswillgetsmallerandsmallertorunonlow-footprintinstallationswithlimitedprocessingcapabilities,includingontheedgeorsmallerenterprise

architectures.

Inaddition,forusecaseswherefactualityandcorrectnessmatter,thecapabilitiesofLLMswillbeenhancedby

integratingstructuredknowledgefromknowledgegraphs.Thispromisingcombinationcanimprovetheaccuracy,

relevanceanddepthofinformationprovidedbyLLMs.In2024,wewillseemoreandmoreAIsystemsthatnotonlyhavea

deepunderstandingofnaturallanguagebutarealsoanchoredinstructured,factualknowledge,makingthemmorereliableandeffectiveforawiderangeofapplications.

Insupportofallthis,newplatformsareemerging,providingtoolsforcompaniestoleverageGenerativeAIwithoutthe

needfordeepinternaltechnicalexpertise.Thiswilllead,in

thelongrun,tothecreationofinterconnectednetworksofmodelsdesignedandfine-tunedforspecifictasks,andtothedevelopmentoftruemulti-agentgenerativeecosystems.

Whyitmatters:ThedevelopmentsinGenerativeAIare

indicatinganevolutiontowardsamoreaccessible,versatile,

andcost-effectivetechnology.Theinnovationsmentioned

beforewillenableorganizationstoscaletheirGenerativeAI

usecasesfasterwhilealsoderivingmorelong-termvaluefromthetechnology.

Things/projectstowatchfor:‘Smallbeingthenewbig’mayseemparadoxical,butit'ssettobecomeareality.ThequestisonforsmallerLLMsthatrequiresignificantlylessresourcestotrainandoperate,whilegeneratinglessfalseinformation(theso-calledhallucinations),propagatingfewersocial

stereotypes,andproducinglesstoxiclanguage.Themission:makeAImodelscomputeefficient,helpful,andtrustworthy.InnovationslikeStanford’sAlpaca,andEuropeanventures

suchasMistralAIandAlephAlpha,areleadingthismovementbutMicrosoftandGooglearealsoenteringthearenawith

OrcaandGeminiNano.

7

QUANTUM

TECHNOLOGY–

WHENCYBERMEETS

QUANTUM

isstillmanyyearsaway.Nonetheless,2024willseevarious

claimsofanarrowquantumadvantageinspecializedtasks

withinlargerconventionalcomputationalworkflows.Boostedbyearlysuccesses,broaderquantumadvantageswillappearinthecomingyears.

Drivenbytheprospectofquantumadvantageinthenear

future,companies,startups,andresearchinstitutesareracingtofindthefirstreal-worldapplications.Keyareasinclude:

Entering2024,quantumcomputinghasdefinitively

lefttheeraoftheoreticalexplorationandentereda

‘utility-scale’quantumcomputationage.Asdefined

byIBM,‘utility-scale’quantumcomputersprovide

computingcapabilitiesbeyondthereachofclassical

computationsandopenadoortoaquantum

advantageinreal-worldcommercialquantum

applications.Assignificantchallengesinqubitquality

remain,alarge-scale,broadquantumadvantage

8TechnoVision2024:ExecutiveCompanion

•CondensedMatterPhysics:Understandingthebehaviorofcomplexmaterialsataquantumlevelcanrevolutionizematerialscienceandengineering.

•QuantumChemistry:SolvingtheSchrödingerequationforlargermolecules,whichclassicalcomputersstrugglewith,canleadtodrugdiscoveryandmaterialsbreakthroughs.

•ComputationalFluidDynamics:Addressingthechallengesinsimulatingfluidflow,essentialforaerodynamicsandclimatemodelling.

•PartialDifferentialEquations:Theseequationsarefundamentalinexpressingphysicalphenomenaand

solvingthemmoreefficientlywillprovidevalueinfieldslikefinanceandengineering.

•LogisticsandOperationsResearch:Optimizingsupplychainsandlogisticscanbenefitfromquantumcomputingbyfindingsolutionstocomplexoptimizationproblems

morequickly.

•SamplingandMonteCarloMethods:Usedinstatisticalphysicsandfinance,thesemethodscanbequadraticallyfasteronaquantumcomputer,providingmoreaccuratemodelsandforecasts.

Additionally,asquantumcomputersaresupposedtobreakcommonlyusedpublic-keycryptosystems(suchasRSA

andECC)oneday,alarge-scalemigrationtoquantum-

safetechnologyisabouttostart.Drivenbytechnological

improvementsandregulatorypressure,2024promisestobeapivotalyearforquantum-safesolutions.

Alreadyin2017,theNationalInstituteofStandardsand

Technology(NIST)initiatedapublicprocesstoselect

quantum-resistantpublic-keycryptographicalgorithmsfor

standardization.Theyrealizedthatpublic-keyinfrastructuresarecrucialtodigitaltrust,protectingeverythingfromweb

connectionsandemailtodigitallysigneddocumentsand

code.Thealgorithmsforasymmetriccryptographyinplace

todayrelyonmathematicallychallengingproblems,such

asfactoringverylargenumbers,whicharecomputationally

difficultforcurrentcomputers.Traditionalcomputerswouldtakeyearstobreakthesealgorithms.Asufficientlypowerfulquantumcomputercouldsolvethesehardmathproblems

inamatterofminutesbyleveragingitsabilitytoprocess

multiplesimultaneousstates.NIST’sgoalistoestablisha

newstandardbasedonevenhardermathproblems(e.g.

latticecryptography)thataredifficultforbothtraditionalandquantumcomputers.Tobeclear,quantum-safealgorithms

donotrequireaquantumcomputerthemselves;theyprotectagainstanattackleveragingaquantumcomputerwhentheybecomepowerfulenough.

Inlate2022,theUSGovernmentenactedthe‘Quantum

ComputingCybersecurityPreparednessAct,’which

promisestocatalyzeaseismicshiftacrossindustries.This

groundbreakinglawmandatesthatallprivateentities

conductingbusinesswiththeUSgovernmentmustmigratetoPQCwithinayearaftertheNISTstandardsarefinallyreleased.ThisshouldaffectPQCstandardsglobally.

Thereleaseofthefinalstandard,combinedwiththenew

regulationshouldintensifytherushtowardsaquantum-

safefuturein2024.Organizationseverywhereneedto

takeimmediatestepstowardupdatingtheircryptographic

systemsandsoftwaretothenewquantum-safealgorithms

becauseaveragemigrationwilltakesignificanttime.Althoughquantumcomputerscapableofbreakingtoday’sencryptiondonotexistyet,theriskofbadactorscollectingencrypted

datatodaywiththeintentionofdecryptingitlater(harvestnow–decryptlater),isveryreal.

Astherushforquantumpreparednessintensifies,starting

aroundmid-2024,industriesrangingfromfinanceto

healthcarewilllikelyinvestheavilyinupgradingtheir

cybersecurityinfrastructures.

Whyitmatters:ThisemergingshifttoPostQuantum

Cryptographypromisestoupendtheverybasisof

cybersecuritystandardsglobally.Allbusinessleadersand

technologyexpertswillbeaffectedbythisapproaching

milestone,whilemoreandmoreorganizationsbegintheir

quantumtransition.

Things/projectstowatchfor:Althoughenterprisescale

quantumcomputingisprobablystillmanyyearsaway,

promisingprogressisbeingmadeinseveralareas.Google

andIBMbelievecommercialquantumsystems,applyingerrormitigationtechniques,areonlyafewyearsaway.Bothtech

giantshavealsoreleasedpublicroadmapsreachingonemillionqubits,by2029forGoogleand2030forIBM.Inthemeantime,hybridclassicaland‘noisy’quantumcomputing(NISQ–NoisyIntermediate-ScaleQuantum)willdeliverthefirstpracticaluseinspecificproblemareas,whilewewaitforlarge-scalefault-

tolerantquantumcomputerstobeavailable.

9

SEMICONDUCTORS

–MOORE’SLAW

ISN’TDEAD,BUTITIS

CHANGING

Thesemiconductorindustrystandsonthebrinkofa

revolutionaryshiftin2024,influencedbyvariousfactorsthatarecollectivelytransformingitsdynamics.

Throughout2023,therehasbeenanintensediscussionamongexpertsaboutthefutureofMoore'sLaw,whichpositsthatthenumberoftransistorsonanintegrated

circuitdoublesapproximatelyeverytwoyears,therebyenhancingthecomputingpowerofamicrochip.Aschiptechnologyapproachesthe2-nanometer(0,0000001

cm)scale,withthecostsofmanufacturingexpandingatanexponentialrate,questionsariseaboutthefeasibilityofcontinuingthistrend,especiallyconsideringthe

impendingphysicalconstraintsatthe1-nanometerscale.

However,2024ispoisedtodemonstratethat

Moore'sLawisnotobsoletebutratherundergoinga

metamorphosis.We'relikelytowitnessshiftsinapproach,suchastheadoptionofverticalstackinginmulti-layer

structures,explorationofnon-siliconmaterials,andnewlithographytechniques.Inessence,wecanlabelthis

technologicalshiftasgoingfor'morethanMoore’,i.e.,aimingtosustainthegrowthincomputingpower,evenastraditionalmethodsofchipminiaturizationapproachtheirphysicallimits.

Simultaneously,thesemiconductorecosystemisset

toundergoreconfiguration.Thiswillencompassthe

establishmentofnewgigafactories,theadaptationto

localregulations,theexpansionoffabricationcapacities,

theintroductionofnovelbusinessmodels,andenhanced

foundryservices.Semiconductorcompaniesare

expectedtointensifytheirfocusoncateringtoindustry-

specificdemandsbyproducingchipsthatsignificantly

enhancecustomerexperiences,markinganewerain

semiconductortechnology.

Whyitmatters:Anaccelerateddigitaltransformation

isexpectedacrossindustries,enabledbymorepowerful

connectedobjects,fromsmartphonestoelectricvehicles

todatacentersandtelecoms.Thesetechnological

breakthroughswillbereflectedinshiftsintheecosystem

ofsemiconductorsitself,withnewgigafactories,

regulations,businessmodels,andfoundryservices

emergingin2024.

Things/projectstowatchfor:Crammingmore

componentsontointegratedcircuitswillcometoanend

becauseweareapproachingtheboundariesofphysics.

Despitethisinsurmountableasymptoticpeakofphysics,

chipdesignisnowcontemplatinga1.xnanometerscale.

However,energyandheatchallengesposesignificant

challenges.Inaddition,thecostoffabricationofsuch

chipsgrowsaggressively.Oneapproachtoimproving

performanceandlowerenergyuseistoaddAIintothe

chip(IBMZSystems)toreducethemovementofdata

tothecomputeandbackandhaveitavailableinthe

processorchipanditscaches.

OthersuseAItooptimizethepowerconsumption

leveragingperiodsoflesseractivitywherenotevery

computeresourceisbeingusedtoitsfullest.Another

waytoleverageAIistoassistthesoftwareengineer

understandthetradeoffbetweentheperformanceof

thesystemandtheprecisionofthenumbers.Ifthey

needmorebandwidth,theycanreducetheprecision,

trainingspecificallyforreducedprecision,effectively

exchangingahardwareproblemforasoftwareproblem.

Otherapproachesincludeaddingmorenodesorusing

heterogeneousarchitectureslikehandingofftasksto

specializedco-processorslikeGPUs,TPUs,andXPUs

exemplifiedbyNvidia’sHopper+Gracesolution,Intel’s

SaphireRapids,andFalconShoreplatforms.

10TechnoVision2024:ExecutiveCompanion

11

BATTERIES–THEPOWEROF

CHEMISTRY

Improvingtheperformanceandreducingthecostsofbatteriesisamajorfocusforbothbusinessesand

governments,astheindustrialstakesarehighforeachnation.Theaimistosupportelectricmobilityandacceleratelong-

durationenergystorage,whichiscriticaltospeedupthe

energytransitiontorenewablesandtheaccelerationofsmartgrids.Therearefivekeyperformancecharacteristicsofbatterytechnologyevolution:

1.EnergyDensity:Energydensityinbatteriesismeasuredintwoways:volumetric(Wh/L)andgravimetric(Wh/kg),indicatingtheenergystoredperunitvolumeormass.Thisiscrucialforelectricvehicles(EV)andstationaryenergy

storage,wherebatterysizeandweightmatter.

2.PowerDensity:Powerdensityreferstotheenergya

batterycanreleaseineachcapacity,withspecificpowerdenotingenergyperunitmass.Thechargingrate(C-rate)describesthepowerneededtochargeabattery,and

dischargepowerindicatestheenergyoutputatany

moment.

3.Lifespan:Thelifespanofabatterydecreaseswitheach

charge-dischargecycle,affectingitslongevityandsuitabilityforitsoriginalpurpose.Eventually,batteriesshouldbe

repurposedorrecycled.

4.Costs:Costisasignificantfactor,oftencalculatedperkWh.ForEVs,achievingcostparitywithinternalcombustion

enginevehiclesiskey,asthebatterypackisthemost

expensivecomponent.

5.Safety:Safetyconcernsariseduetotheflammableliquidelectrolyteandthermalenergyreleasefromthecathodematerialafterseveralcycles.Thesesafetyissuescould

hinderthebroaderadoptionofEVsandbattery-based

energystoragesolutions.

12TechnoVision2024:ExecutiveCompanion

WhileLFP(lithiumferro-phosphate)andNMC(nickel

manganesecobalt)arebecomingstandardforelectricvehicleapplications,severaltechnologiesconcerningthechemistryofbatteriesarebeingexplored,suchascobalt-free(sodium-ion)andsolid-statebatteries,withalikelyaccelerationin2024.Theprimarydriverforthemarketofsodium-ionbatteriesisthe

increaseddemandforenergystoragegeneratedthroughsolarandwind.MarketleadersinthisindustryareFaradionLimited(UK),NGKInsulatorsLtd(Japan),Tiamat(France),HiNaBatteryTechnologyCo.Ltd(China),andContemporaryAmperex

TechnologyCo.Limited(China).

Thedevelopmentofsolid-statebatteriesrepresentsamajorshiftinbatterytechnology,primarilyforelectricvehicles,astheyhavehigherenergydensities(i.e.storagecapacity),forapricewhichwillbecomelowerthantraditionalbatteries.Theyalsoreducedependencyonmaterialssuchaslithium,nickel,cobalt,rare-earthminerals,andgraphite,whilepromising

longerlifespansandmorerobustsafety.QuantumScape

(USA),Toyota(Japan),SolidPower(USA),Samsung(South-

Korea),andLGChem(South-Korea)areamongtheleadersinthisrapidlyevolvingfield.

Whyitmatters:Inabusinessworlddrivenbytheenergy

transition,thefightagainstclimatechange,andorganizationsintransitiontoasustainableeconomy,theseemerging

developmentsmayofferapathwaytowardsbettertradeoffsforthebatteryindustryandmoresustainableuseofmaterials.

Things/projectstowatchfor:Whenlookingatthis

technologymegatrend,twocategoriesofplayersneedtobedistinguished:theunicornsandthestartups.Amongstthe

unicorns,well-establishedcompaniescanberecognizedsuchasTesla(USA),acceleratingthetransitiontoEVsandenergy

storage,Northvolt(Sweden),manufacturingLi-ionforEVs,

Verkor(France),manufacturinglow-carbonbatteriesforEVs,QuantumScape(USA),developssolid-statebatterytechnologytoincreasetherangeofEV’s,Freyr(Norway),manufacturingsemisolidLi-ionbatteriesforenergystorageandEVs,Sila

(USA),providerofnano-compositesiliconanodethatpowersbreakthroughenergydensityinEVbatteries,andSESAI(USA),manufacturingofscalable,dense,smartandlightLi-Metal

batteriesforelectrictransportationonlandandinair.

Sincebatterytechnologyexhibitsgenuinequantum

mechanicalandquantumchemicalbehavior,itisaverynaturalareatoapplyquantumcomputing.Severalgovernment-

fundedandpromisingprojectsareongoing,andalarge

amountofstartupactivitycanbewitnessed—e.g.IonQ(USA),psiQuantum(USA),Phasecraft(UK).

SPACETECH–ADDRESSINGTHEEARTH’SCHALLENGES

FROMOUTERSPACE

In2024,humanitywillbepreparingtoreturntothemoon.

TheNASAArtemisIIMission,scheduledforaNovember2024launch,willsendastronautsintolunarorbitforthefirsttimesincethe1972Apollo17mission.Thislandmarkeventisa

symbolofabroaderindustrytrendthatcanbedescribedasanewSpaceAge.

Thisrenewedinterestinspacetechnologiesisdrivenbytwomajorshiftsintheindustry.Firstly,andcontrarytotheSpaceRaceofthe'60sand'70s,itisdrivennotjustbygovernmentagencies,butalsobyamultitudeofprivateactors,from

startupstocorporations.Secondly,asidefromthemajor

scientificmissionsheadedtotheMoonorMars,thisrace

ismostlyheadedforLowEarthOrbit(LEO),inthepursuit

ofcheaperusecasesandmoreperformance.Allinall,the

year2024issettousherinanarrayofexcitingtechnologicalprojectsinmanydomains:

.Inthefieldofspacecommunicationsandnetworks,wecanseeasurgeofexcitingprojectssuchasthedevelopment

oflasercommunicationsystems,hybridgroundandspacenetworks,orevenseamless5Gconnectivityfromspace.

.InEarthObservation,wecanlookforwardtofascinatingprojectstoadvanceourunderstandingoftheplanetanditschangingenvironment.Inparticular,theincreasing

integrationofAIinEarthObservationisoffering

moreefficientdataprocessing,enhancedanalytical

capabilities,andthepotentialfornewinsightsintoEarth'senvironmentalandclimate-relatedchallenges.

.Simultaneously,theInternetofThingsisexpandinginto

anentirelynewdimensionwiththedevelopmentof

satelliteconstellations.CubeSats,ChipSats,andother

nanosatellitesarebeinglaunchedintheirthousands,

eachonboardingitsownarrayofminiaturesensorsand

communicationsequipment.Anexponentiallygrowing

volumeofdataisbeingcollectedandsharedforavarietyofpurposes,includinggatheringdataonweatherpatternsandwildlifemigrations.

.Therearealsoseveralexcitingprojectsattheintersectionofcyberandspace,eveninthefieldofquantum

cryptography.Cybersecurityinspacehasbecomeacrucialfrontier,especiallyastherelianceonspace-basedassetsforbothmilitaryandcivilianpurposesincreases.There'sanincreasingemphasisonimprovingcybersecurityfor

space-boundequipment,withstrategieslikeZeroTrust

architectures,andevenresearchintoQuantumKey

Distribution(QKD).

.Finally,thisnewspaceageisdrivenbyacomplete

‘sustainablebydesign’philosophy.Thisapproach

emphasizestheimportanceofsustainabilityfromthe

outsetbyemphasizingthedevelopmentofspacecraftandsatellitesthatarenotonlymoreefficientbutalsoreducespacedebris.

13

Alloftheseinnovationssignifythedawnofanewepoch

inspaceexploration,fueledbyrapidtechnological

advancementsandarekindledinterestfromthepublic.Thisrenewedinterestinspacetechnologiesaimstodrivescientificdiscoveriesandhelpsolvetheearth’smostcriticalchallenges,includingthemonitoringofclimaterisksanddisasters,

betteraccesstotelecommunications,aswellasdefenseandsovereignty.

Whyitmatters:ThelastSpaceRacerevolutionizedtheworldbyacceleratinggroundbreakinginnovationslikesatellite

technology,GPS,integratedcircuits,solarenergy,and

compositematerials.Thisreturntothestarspromisessimilarrevolutionsinthefieldsofcomputing,telecommunications,andEarthObservation.

Things/Projectstowatchfor:In2024,theSpaceTechsectorisbrimmingwithinnovativestartups,eachcontributinguniqueadvancementstotheindustry.Someplayerstokeepaneyeoninclude:

1.Blackshark(Austria):Identifyinganyobjectontheearth’ssurfacefromspace.

2.GalaxEye(India):Providingall-weathermultisensoryimagingsatellites.

3.Helios(Israel):Extractingoxygenfrommoondust.

4.OrbitFab(USA):Fuellingstationsforspacecraft.

5.TrueAnomaly(USA):Specializinginautonomousorbitalvehicles.

6.SpinLaunch(USA):Catapultingrocketsintospace.

7.GATESpace(Austria):Offeringbolt-onpropulsionanddeepthrottlingengines.

8.KeplarCommunications(USA):Theinternetofspace.

9.PlanetLabs(USA):HighFrequencygeospatialdatathatdrivesinnovation.

10.Ohmspace(UK):Innovatingwithlow-pressurewaterpropellants.

11.Firefly(USA):End-to-endspacetransportationcompany.

12.RevolvSpace(Netherlands):Advancingsolararrayrotaryactuators.

13.AbyomSpaceTech(India):Developingre-ignitable

cryogenicrocketengines.

14.ClearSpace(Switzerland):Removingspacedebris.

15.Vyoma(Germany):Addressingcollisionavoidance.

16.Ion-X(France):Innovatinginelectricpropulsionsystems.

17.Quasar(Australia):DevelopingPhasedarrayground

stations.

18.Astrix(NewZealand):Focusedoninflatablesolararrays.

19.Astranis(USA):Buildingsmall,lowcostinternet

connectivitysatellites.

20.BlueOrigin(USA):Pioneeringreusablerockettechnology.

Thesecompaniesareattheforefrontoftransformingspacetechnology,pushingboundariesintheirrespectivedomains.

14TechnoVision2024:ExecutiveCompanion

15

BEYOND2024–OTHER

TECHNOLOGIESSHAPING

THENEXT5YEARS

1.Low-carbonhydrogen:Towardsacrediblealternativetofossilfuels

Hydrogenhaslongbeentoutedasacleanfuelalternativebecauseitproducesonlywaterwhenburned.However,traditionalhydrogenproductionisenergy-intensiveandoftenreliesonfossilfuels.Thetrendtowardlow-carbonhydrogenseekstochangethisbyusingrenewable

ornuclearenergytopowertheelectrolysisofwater,

splittingitintohydrogenandoxygenwithzerocarbon

3.Syntheticbiology:Harnessingthepowerofnature

TheCOVID-19pandemicunderscoredtheimportanceof

syntheticbiologytoprotectpublic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论