版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EXECUTIVECOMPANION
/PromptWhatwillsmarttechnologyinthefuturelooklike?
TECHNO
VISION2024/Promptthefuture
07
08
10
11
13
15
2TechnoVision2024:ExecutiveCompanion
TABLEOF
CONTENTS
INTRODUCTION
WHICHTECHNOLOGY(MEGA)TRENDSWILLSEE
INFLECTIONPOINTSIN2024?
GenerativeArtificialIntelligence–SmallWillBetheNewBig
QuantumTechnology–WhenCyberMeetsQuantum
Semiconductors–Moore’sLawIsn’tDead,ButItIsChanging
Batteries–ThePowerofNewChemistry
SpaceTech–AddressingtheEarth’sChallengesfromOuterSpace
Beyond2024–OtherTechnologiesShapingtheNext5Years
TECHNOVISION2024SUMMARIZED
TECHNOVISION2024:WHAT’SNEW?
FURTHERRESEARCH
05
06
07
08
10
11
13
15
16
19
22
3
/PromptWhatwillsmarttechnologyinthefuturelooklike?
4TechnoVision2024:ExecutiveCompanion
INTRODUCTION
Thequote“Weshapeourtechnologiesandafterwardsourtechnologiesshapeus”
echoesWinstonChurchill’sfamouswordsduringthereconstructionoftheCommons
Chamberin1943,afteritsdestructionbyincendiarybombsintheBlitz.Churchill,
emphasizingthesignificanceoftheChamber’sadversarialrectangularpattern,believedthatitsshapewascrucialforBritain’stwo-partysystemandparliamentarydemocracy.
Similarly,wecouldarguethatweareinevitablyshapedbythetechnologieswecreate.Technology’sprimaryroleistoaugmentandenhancehumanabilities,a
traitdistinguishinghumansfrommostmammals.However,weoftenoverlookhow
technology,inturn,influencesourbehavior,organizations,andsociety.Acriticalquestionarises:Howwilltechnologyshapeourworldin2024andbeyond?
Forover15yearsnow,Capgemini’sTechnoVisionhasbeenexploringthisquestionbut
sofarithasmainlyfocusedonITTrends.ThisyearwedecidedtoaddacompaniontoourTechnoVisionfullreport,takingawiderviewoftechnologiesthataremovingtheworld.
Overall,ourintentisnottobuildfuturisticforecasts;weseeTechnoVisionasatooltofacilitatestrategicdialoguebetweentechnologistsandbusinessleaders,helpingtoidentifyprioritiesandopportunitiesforbusinessoperationsanddigitalsystemsdevelopment.
TechnoVisionaimstobetheguiding‘NorthStar’inthedualtransformationtowardsadigitalandsustainableeconomy.Thisjourneyinvolvesnumeroustechnologicalandbusinessdecisions,mademorecomplexbytheurgentneedforstrategicchoicesthatmightseemsimpleatfirstglancebutoftenhavefar-reachingimplications.
GenerativeAI,whichtooktheworldbystormin2023,isexpectedtocontinueshapingthefuture.Alongsidethis,severalotherkeytechnologymegatrendsarecriticalfor
decision-makersplanningforthefuture.Thisisthestartingpointofourdiscussion,leadingtothe37trendsoutlinedinTechnoVision2024.Together,thesetrendswillprovideinsightsforshapingthefutureanddeterminingthenecessary‘prompts’fororganizationsin2024toturntheirvisionsintoreality.
MICHIELBOREEL
ExecutiveVicePresidentand
GlobalChiefTechnologyOfficeratSogeti,partofCapgemini
PASCALBRIER
GroupChiefInnovationOfficer
andmemberoftheGlobal
ExecutiveCommittee
5
WHICHTECHNOLOGY
(MEGA)TRENDSWILLSEE
INFLECTIONPOINTSIN2024?
Whenitcomestoshapingthefuture,alltechnologytrendsmightholdequalsignificance,asforecastingisoftenachallenging,ifnotanimpossibletask.However,certaintrendsemergeasmoreprominentdueto
theiranticipatedsubstantialimpactandtheexpectationofsignificantbreakthroughsinthenearfuture.
Wehavepinpointedfivesuchprominenttechnologymegatrendsthatshouldhaveinflectionpointsin2024:
GenerativeArtificialIntelligence–Smallwillbethenewbig
QuantumTechnology–WhencybermeetsQuantum
Semiconductors–Moore’sLawisn’tdead,butitischanging
Batteries–Thepowerofnewchemistry
SpaceTech–Addressingtheearth’schallengesfromouterspace
6TechnoVision2024:ExecutiveCompanion
GENERATIVEAI–SMALL
WILLBETHENEWBIG
In2024,willGenerativeAIliveuptothemassiveamountofhypeithasgenerated?Theshortanswerisyes.
GenerativeAIhasmadeacrashingentranceintheglobal
technologyandbusinessconversationinlate2022and2023,withexpectationsofsignificantbusinessimpact.
Butthispopularityalsohighlightedsomeofthedrawbacksofgeneral-purposeLargeLanguageModels(LLMs).Onenotableproblemhasbeenthetendencyofsomeofthesemodelsto
‘hallucinate’,inotherwords,tooccasionallyproduceoutputsthatareunexpected,irrelevant,nonsensical,ordisconnectedfromtheinputtheyreceived.In2023,thesolutionhasmostlybeentobuildbiggerandbiggermodels,withmoredata,moreparameters,andmorecomputingpowerbehindthem.But
thistrendisnotinfinitelysustainable,norisitsuitedforallusecases.
WhilecurrentLLMswillcontinuetothrive,thereisalso
anincreasingneedforsmaller,morecost-efficient,and
specializedmodels.Forexample,wewillseesector-specificmodelsforadvancedusecasesinmedicine,engineering,
education,andmanyothers.Wecanalsoanticipatedomain-specificmodels,tailoredforspecifictasks(likeadvanced
codingassistants).Thesemodelswillgetsmallerandsmallertorunonlow-footprintinstallationswithlimitedprocessingcapabilities,includingontheedgeorsmallerenterprise
architectures.
Inaddition,forusecaseswherefactualityandcorrectnessmatter,thecapabilitiesofLLMswillbeenhancedby
integratingstructuredknowledgefromknowledgegraphs.Thispromisingcombinationcanimprovetheaccuracy,
relevanceanddepthofinformationprovidedbyLLMs.In2024,wewillseemoreandmoreAIsystemsthatnotonlyhavea
deepunderstandingofnaturallanguagebutarealsoanchoredinstructured,factualknowledge,makingthemmorereliableandeffectiveforawiderangeofapplications.
Insupportofallthis,newplatformsareemerging,providingtoolsforcompaniestoleverageGenerativeAIwithoutthe
needfordeepinternaltechnicalexpertise.Thiswilllead,in
thelongrun,tothecreationofinterconnectednetworksofmodelsdesignedandfine-tunedforspecifictasks,andtothedevelopmentoftruemulti-agentgenerativeecosystems.
Whyitmatters:ThedevelopmentsinGenerativeAIare
indicatinganevolutiontowardsamoreaccessible,versatile,
andcost-effectivetechnology.Theinnovationsmentioned
beforewillenableorganizationstoscaletheirGenerativeAI
usecasesfasterwhilealsoderivingmorelong-termvaluefromthetechnology.
Things/projectstowatchfor:‘Smallbeingthenewbig’mayseemparadoxical,butit'ssettobecomeareality.ThequestisonforsmallerLLMsthatrequiresignificantlylessresourcestotrainandoperate,whilegeneratinglessfalseinformation(theso-calledhallucinations),propagatingfewersocial
stereotypes,andproducinglesstoxiclanguage.Themission:makeAImodelscomputeefficient,helpful,andtrustworthy.InnovationslikeStanford’sAlpaca,andEuropeanventures
suchasMistralAIandAlephAlpha,areleadingthismovementbutMicrosoftandGooglearealsoenteringthearenawith
OrcaandGeminiNano.
7
QUANTUM
TECHNOLOGY–
WHENCYBERMEETS
QUANTUM
isstillmanyyearsaway.Nonetheless,2024willseevarious
claimsofanarrowquantumadvantageinspecializedtasks
withinlargerconventionalcomputationalworkflows.Boostedbyearlysuccesses,broaderquantumadvantageswillappearinthecomingyears.
Drivenbytheprospectofquantumadvantageinthenear
future,companies,startups,andresearchinstitutesareracingtofindthefirstreal-worldapplications.Keyareasinclude:
Entering2024,quantumcomputinghasdefinitively
lefttheeraoftheoreticalexplorationandentereda
‘utility-scale’quantumcomputationage.Asdefined
byIBM,‘utility-scale’quantumcomputersprovide
computingcapabilitiesbeyondthereachofclassical
computationsandopenadoortoaquantum
advantageinreal-worldcommercialquantum
applications.Assignificantchallengesinqubitquality
remain,alarge-scale,broadquantumadvantage
8TechnoVision2024:ExecutiveCompanion
•CondensedMatterPhysics:Understandingthebehaviorofcomplexmaterialsataquantumlevelcanrevolutionizematerialscienceandengineering.
•QuantumChemistry:SolvingtheSchrödingerequationforlargermolecules,whichclassicalcomputersstrugglewith,canleadtodrugdiscoveryandmaterialsbreakthroughs.
•ComputationalFluidDynamics:Addressingthechallengesinsimulatingfluidflow,essentialforaerodynamicsandclimatemodelling.
•PartialDifferentialEquations:Theseequationsarefundamentalinexpressingphysicalphenomenaand
solvingthemmoreefficientlywillprovidevalueinfieldslikefinanceandengineering.
•LogisticsandOperationsResearch:Optimizingsupplychainsandlogisticscanbenefitfromquantumcomputingbyfindingsolutionstocomplexoptimizationproblems
morequickly.
•SamplingandMonteCarloMethods:Usedinstatisticalphysicsandfinance,thesemethodscanbequadraticallyfasteronaquantumcomputer,providingmoreaccuratemodelsandforecasts.
Additionally,asquantumcomputersaresupposedtobreakcommonlyusedpublic-keycryptosystems(suchasRSA
andECC)oneday,alarge-scalemigrationtoquantum-
safetechnologyisabouttostart.Drivenbytechnological
improvementsandregulatorypressure,2024promisestobeapivotalyearforquantum-safesolutions.
Alreadyin2017,theNationalInstituteofStandardsand
Technology(NIST)initiatedapublicprocesstoselect
quantum-resistantpublic-keycryptographicalgorithmsfor
standardization.Theyrealizedthatpublic-keyinfrastructuresarecrucialtodigitaltrust,protectingeverythingfromweb
connectionsandemailtodigitallysigneddocumentsand
code.Thealgorithmsforasymmetriccryptographyinplace
todayrelyonmathematicallychallengingproblems,such
asfactoringverylargenumbers,whicharecomputationally
difficultforcurrentcomputers.Traditionalcomputerswouldtakeyearstobreakthesealgorithms.Asufficientlypowerfulquantumcomputercouldsolvethesehardmathproblems
inamatterofminutesbyleveragingitsabilitytoprocess
multiplesimultaneousstates.NIST’sgoalistoestablisha
newstandardbasedonevenhardermathproblems(e.g.
latticecryptography)thataredifficultforbothtraditionalandquantumcomputers.Tobeclear,quantum-safealgorithms
donotrequireaquantumcomputerthemselves;theyprotectagainstanattackleveragingaquantumcomputerwhentheybecomepowerfulenough.
Inlate2022,theUSGovernmentenactedthe‘Quantum
ComputingCybersecurityPreparednessAct,’which
promisestocatalyzeaseismicshiftacrossindustries.This
groundbreakinglawmandatesthatallprivateentities
conductingbusinesswiththeUSgovernmentmustmigratetoPQCwithinayearaftertheNISTstandardsarefinallyreleased.ThisshouldaffectPQCstandardsglobally.
Thereleaseofthefinalstandard,combinedwiththenew
regulationshouldintensifytherushtowardsaquantum-
safefuturein2024.Organizationseverywhereneedto
takeimmediatestepstowardupdatingtheircryptographic
systemsandsoftwaretothenewquantum-safealgorithms
becauseaveragemigrationwilltakesignificanttime.Althoughquantumcomputerscapableofbreakingtoday’sencryptiondonotexistyet,theriskofbadactorscollectingencrypted
datatodaywiththeintentionofdecryptingitlater(harvestnow–decryptlater),isveryreal.
Astherushforquantumpreparednessintensifies,starting
aroundmid-2024,industriesrangingfromfinanceto
healthcarewilllikelyinvestheavilyinupgradingtheir
cybersecurityinfrastructures.
Whyitmatters:ThisemergingshifttoPostQuantum
Cryptographypromisestoupendtheverybasisof
cybersecuritystandardsglobally.Allbusinessleadersand
technologyexpertswillbeaffectedbythisapproaching
milestone,whilemoreandmoreorganizationsbegintheir
quantumtransition.
Things/projectstowatchfor:Althoughenterprisescale
quantumcomputingisprobablystillmanyyearsaway,
promisingprogressisbeingmadeinseveralareas.Google
andIBMbelievecommercialquantumsystems,applyingerrormitigationtechniques,areonlyafewyearsaway.Bothtech
giantshavealsoreleasedpublicroadmapsreachingonemillionqubits,by2029forGoogleand2030forIBM.Inthemeantime,hybridclassicaland‘noisy’quantumcomputing(NISQ–NoisyIntermediate-ScaleQuantum)willdeliverthefirstpracticaluseinspecificproblemareas,whilewewaitforlarge-scalefault-
tolerantquantumcomputerstobeavailable.
9
SEMICONDUCTORS
–MOORE’SLAW
ISN’TDEAD,BUTITIS
CHANGING
Thesemiconductorindustrystandsonthebrinkofa
revolutionaryshiftin2024,influencedbyvariousfactorsthatarecollectivelytransformingitsdynamics.
Throughout2023,therehasbeenanintensediscussionamongexpertsaboutthefutureofMoore'sLaw,whichpositsthatthenumberoftransistorsonanintegrated
circuitdoublesapproximatelyeverytwoyears,therebyenhancingthecomputingpowerofamicrochip.Aschiptechnologyapproachesthe2-nanometer(0,0000001
cm)scale,withthecostsofmanufacturingexpandingatanexponentialrate,questionsariseaboutthefeasibilityofcontinuingthistrend,especiallyconsideringthe
impendingphysicalconstraintsatthe1-nanometerscale.
However,2024ispoisedtodemonstratethat
Moore'sLawisnotobsoletebutratherundergoinga
metamorphosis.We'relikelytowitnessshiftsinapproach,suchastheadoptionofverticalstackinginmulti-layer
structures,explorationofnon-siliconmaterials,andnewlithographytechniques.Inessence,wecanlabelthis
technologicalshiftasgoingfor'morethanMoore’,i.e.,aimingtosustainthegrowthincomputingpower,evenastraditionalmethodsofchipminiaturizationapproachtheirphysicallimits.
Simultaneously,thesemiconductorecosystemisset
toundergoreconfiguration.Thiswillencompassthe
establishmentofnewgigafactories,theadaptationto
localregulations,theexpansionoffabricationcapacities,
theintroductionofnovelbusinessmodels,andenhanced
foundryservices.Semiconductorcompaniesare
expectedtointensifytheirfocusoncateringtoindustry-
specificdemandsbyproducingchipsthatsignificantly
enhancecustomerexperiences,markinganewerain
semiconductortechnology.
Whyitmatters:Anaccelerateddigitaltransformation
isexpectedacrossindustries,enabledbymorepowerful
connectedobjects,fromsmartphonestoelectricvehicles
todatacentersandtelecoms.Thesetechnological
breakthroughswillbereflectedinshiftsintheecosystem
ofsemiconductorsitself,withnewgigafactories,
regulations,businessmodels,andfoundryservices
emergingin2024.
Things/projectstowatchfor:Crammingmore
componentsontointegratedcircuitswillcometoanend
becauseweareapproachingtheboundariesofphysics.
Despitethisinsurmountableasymptoticpeakofphysics,
chipdesignisnowcontemplatinga1.xnanometerscale.
However,energyandheatchallengesposesignificant
challenges.Inaddition,thecostoffabricationofsuch
chipsgrowsaggressively.Oneapproachtoimproving
performanceandlowerenergyuseistoaddAIintothe
chip(IBMZSystems)toreducethemovementofdata
tothecomputeandbackandhaveitavailableinthe
processorchipanditscaches.
OthersuseAItooptimizethepowerconsumption
leveragingperiodsoflesseractivitywherenotevery
computeresourceisbeingusedtoitsfullest.Another
waytoleverageAIistoassistthesoftwareengineer
understandthetradeoffbetweentheperformanceof
thesystemandtheprecisionofthenumbers.Ifthey
needmorebandwidth,theycanreducetheprecision,
trainingspecificallyforreducedprecision,effectively
exchangingahardwareproblemforasoftwareproblem.
Otherapproachesincludeaddingmorenodesorusing
heterogeneousarchitectureslikehandingofftasksto
specializedco-processorslikeGPUs,TPUs,andXPUs
exemplifiedbyNvidia’sHopper+Gracesolution,Intel’s
SaphireRapids,andFalconShoreplatforms.
10TechnoVision2024:ExecutiveCompanion
11
BATTERIES–THEPOWEROF
CHEMISTRY
Improvingtheperformanceandreducingthecostsofbatteriesisamajorfocusforbothbusinessesand
governments,astheindustrialstakesarehighforeachnation.Theaimistosupportelectricmobilityandacceleratelong-
durationenergystorage,whichiscriticaltospeedupthe
energytransitiontorenewablesandtheaccelerationofsmartgrids.Therearefivekeyperformancecharacteristicsofbatterytechnologyevolution:
1.EnergyDensity:Energydensityinbatteriesismeasuredintwoways:volumetric(Wh/L)andgravimetric(Wh/kg),indicatingtheenergystoredperunitvolumeormass.Thisiscrucialforelectricvehicles(EV)andstationaryenergy
storage,wherebatterysizeandweightmatter.
2.PowerDensity:Powerdensityreferstotheenergya
batterycanreleaseineachcapacity,withspecificpowerdenotingenergyperunitmass.Thechargingrate(C-rate)describesthepowerneededtochargeabattery,and
dischargepowerindicatestheenergyoutputatany
moment.
3.Lifespan:Thelifespanofabatterydecreaseswitheach
charge-dischargecycle,affectingitslongevityandsuitabilityforitsoriginalpurpose.Eventually,batteriesshouldbe
repurposedorrecycled.
4.Costs:Costisasignificantfactor,oftencalculatedperkWh.ForEVs,achievingcostparitywithinternalcombustion
enginevehiclesiskey,asthebatterypackisthemost
expensivecomponent.
5.Safety:Safetyconcernsariseduetotheflammableliquidelectrolyteandthermalenergyreleasefromthecathodematerialafterseveralcycles.Thesesafetyissuescould
hinderthebroaderadoptionofEVsandbattery-based
energystoragesolutions.
12TechnoVision2024:ExecutiveCompanion
WhileLFP(lithiumferro-phosphate)andNMC(nickel
manganesecobalt)arebecomingstandardforelectricvehicleapplications,severaltechnologiesconcerningthechemistryofbatteriesarebeingexplored,suchascobalt-free(sodium-ion)andsolid-statebatteries,withalikelyaccelerationin2024.Theprimarydriverforthemarketofsodium-ionbatteriesisthe
increaseddemandforenergystoragegeneratedthroughsolarandwind.MarketleadersinthisindustryareFaradionLimited(UK),NGKInsulatorsLtd(Japan),Tiamat(France),HiNaBatteryTechnologyCo.Ltd(China),andContemporaryAmperex
TechnologyCo.Limited(China).
Thedevelopmentofsolid-statebatteriesrepresentsamajorshiftinbatterytechnology,primarilyforelectricvehicles,astheyhavehigherenergydensities(i.e.storagecapacity),forapricewhichwillbecomelowerthantraditionalbatteries.Theyalsoreducedependencyonmaterialssuchaslithium,nickel,cobalt,rare-earthminerals,andgraphite,whilepromising
longerlifespansandmorerobustsafety.QuantumScape
(USA),Toyota(Japan),SolidPower(USA),Samsung(South-
Korea),andLGChem(South-Korea)areamongtheleadersinthisrapidlyevolvingfield.
Whyitmatters:Inabusinessworlddrivenbytheenergy
transition,thefightagainstclimatechange,andorganizationsintransitiontoasustainableeconomy,theseemerging
developmentsmayofferapathwaytowardsbettertradeoffsforthebatteryindustryandmoresustainableuseofmaterials.
Things/projectstowatchfor:Whenlookingatthis
technologymegatrend,twocategoriesofplayersneedtobedistinguished:theunicornsandthestartups.Amongstthe
unicorns,well-establishedcompaniescanberecognizedsuchasTesla(USA),acceleratingthetransitiontoEVsandenergy
storage,Northvolt(Sweden),manufacturingLi-ionforEVs,
Verkor(France),manufacturinglow-carbonbatteriesforEVs,QuantumScape(USA),developssolid-statebatterytechnologytoincreasetherangeofEV’s,Freyr(Norway),manufacturingsemisolidLi-ionbatteriesforenergystorageandEVs,Sila
(USA),providerofnano-compositesiliconanodethatpowersbreakthroughenergydensityinEVbatteries,andSESAI(USA),manufacturingofscalable,dense,smartandlightLi-Metal
batteriesforelectrictransportationonlandandinair.
Sincebatterytechnologyexhibitsgenuinequantum
mechanicalandquantumchemicalbehavior,itisaverynaturalareatoapplyquantumcomputing.Severalgovernment-
fundedandpromisingprojectsareongoing,andalarge
amountofstartupactivitycanbewitnessed—e.g.IonQ(USA),psiQuantum(USA),Phasecraft(UK).
SPACETECH–ADDRESSINGTHEEARTH’SCHALLENGES
FROMOUTERSPACE
In2024,humanitywillbepreparingtoreturntothemoon.
TheNASAArtemisIIMission,scheduledforaNovember2024launch,willsendastronautsintolunarorbitforthefirsttimesincethe1972Apollo17mission.Thislandmarkeventisa
symbolofabroaderindustrytrendthatcanbedescribedasanewSpaceAge.
Thisrenewedinterestinspacetechnologiesisdrivenbytwomajorshiftsintheindustry.Firstly,andcontrarytotheSpaceRaceofthe'60sand'70s,itisdrivennotjustbygovernmentagencies,butalsobyamultitudeofprivateactors,from
startupstocorporations.Secondly,asidefromthemajor
scientificmissionsheadedtotheMoonorMars,thisrace
ismostlyheadedforLowEarthOrbit(LEO),inthepursuit
ofcheaperusecasesandmoreperformance.Allinall,the
year2024issettousherinanarrayofexcitingtechnologicalprojectsinmanydomains:
.Inthefieldofspacecommunicationsandnetworks,wecanseeasurgeofexcitingprojectssuchasthedevelopment
oflasercommunicationsystems,hybridgroundandspacenetworks,orevenseamless5Gconnectivityfromspace.
.InEarthObservation,wecanlookforwardtofascinatingprojectstoadvanceourunderstandingoftheplanetanditschangingenvironment.Inparticular,theincreasing
integrationofAIinEarthObservationisoffering
moreefficientdataprocessing,enhancedanalytical
capabilities,andthepotentialfornewinsightsintoEarth'senvironmentalandclimate-relatedchallenges.
.Simultaneously,theInternetofThingsisexpandinginto
anentirelynewdimensionwiththedevelopmentof
satelliteconstellations.CubeSats,ChipSats,andother
nanosatellitesarebeinglaunchedintheirthousands,
eachonboardingitsownarrayofminiaturesensorsand
communicationsequipment.Anexponentiallygrowing
volumeofdataisbeingcollectedandsharedforavarietyofpurposes,includinggatheringdataonweatherpatternsandwildlifemigrations.
.Therearealsoseveralexcitingprojectsattheintersectionofcyberandspace,eveninthefieldofquantum
cryptography.Cybersecurityinspacehasbecomeacrucialfrontier,especiallyastherelianceonspace-basedassetsforbothmilitaryandcivilianpurposesincreases.There'sanincreasingemphasisonimprovingcybersecurityfor
space-boundequipment,withstrategieslikeZeroTrust
architectures,andevenresearchintoQuantumKey
Distribution(QKD).
.Finally,thisnewspaceageisdrivenbyacomplete
‘sustainablebydesign’philosophy.Thisapproach
emphasizestheimportanceofsustainabilityfromthe
outsetbyemphasizingthedevelopmentofspacecraftandsatellitesthatarenotonlymoreefficientbutalsoreducespacedebris.
13
Alloftheseinnovationssignifythedawnofanewepoch
inspaceexploration,fueledbyrapidtechnological
advancementsandarekindledinterestfromthepublic.Thisrenewedinterestinspacetechnologiesaimstodrivescientificdiscoveriesandhelpsolvetheearth’smostcriticalchallenges,includingthemonitoringofclimaterisksanddisasters,
betteraccesstotelecommunications,aswellasdefenseandsovereignty.
Whyitmatters:ThelastSpaceRacerevolutionizedtheworldbyacceleratinggroundbreakinginnovationslikesatellite
technology,GPS,integratedcircuits,solarenergy,and
compositematerials.Thisreturntothestarspromisessimilarrevolutionsinthefieldsofcomputing,telecommunications,andEarthObservation.
Things/Projectstowatchfor:In2024,theSpaceTechsectorisbrimmingwithinnovativestartups,eachcontributinguniqueadvancementstotheindustry.Someplayerstokeepaneyeoninclude:
1.Blackshark(Austria):Identifyinganyobjectontheearth’ssurfacefromspace.
2.GalaxEye(India):Providingall-weathermultisensoryimagingsatellites.
3.Helios(Israel):Extractingoxygenfrommoondust.
4.OrbitFab(USA):Fuellingstationsforspacecraft.
5.TrueAnomaly(USA):Specializinginautonomousorbitalvehicles.
6.SpinLaunch(USA):Catapultingrocketsintospace.
7.GATESpace(Austria):Offeringbolt-onpropulsionanddeepthrottlingengines.
8.KeplarCommunications(USA):Theinternetofspace.
9.PlanetLabs(USA):HighFrequencygeospatialdatathatdrivesinnovation.
10.Ohmspace(UK):Innovatingwithlow-pressurewaterpropellants.
11.Firefly(USA):End-to-endspacetransportationcompany.
12.RevolvSpace(Netherlands):Advancingsolararrayrotaryactuators.
13.AbyomSpaceTech(India):Developingre-ignitable
cryogenicrocketengines.
14.ClearSpace(Switzerland):Removingspacedebris.
15.Vyoma(Germany):Addressingcollisionavoidance.
16.Ion-X(France):Innovatinginelectricpropulsionsystems.
17.Quasar(Australia):DevelopingPhasedarrayground
stations.
18.Astrix(NewZealand):Focusedoninflatablesolararrays.
19.Astranis(USA):Buildingsmall,lowcostinternet
connectivitysatellites.
20.BlueOrigin(USA):Pioneeringreusablerockettechnology.
Thesecompaniesareattheforefrontoftransformingspacetechnology,pushingboundariesintheirrespectivedomains.
14TechnoVision2024:ExecutiveCompanion
15
BEYOND2024–OTHER
TECHNOLOGIESSHAPING
THENEXT5YEARS
1.Low-carbonhydrogen:Towardsacrediblealternativetofossilfuels
Hydrogenhaslongbeentoutedasacleanfuelalternativebecauseitproducesonlywaterwhenburned.However,traditionalhydrogenproductionisenergy-intensiveandoftenreliesonfossilfuels.Thetrendtowardlow-carbonhydrogenseekstochangethisbyusingrenewable
ornuclearenergytopowertheelectrolysisofwater,
splittingitintohydrogenandoxygenwithzerocarbon
3.Syntheticbiology:Harnessingthepowerofnature
TheCOVID-19pandemicunderscoredtheimportanceof
syntheticbiologytoprotectpublic
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询师出方案多少钱
- 心理咨询室服务方案设计
- 班级省钱活动策划方案
- 码头-施工方案
- 心理学择校咨询方案模板
- 品牌气球活动策划方案
- 中秋敦煌活动方案策划
- 施工方案导入
- 策划活动站位分析方案
- 大规模活动安全保障方案
- 2024年青岛市市属事业单位遴选考试真题
- 胃肠道癌的健康宣教
- 第11章 作业24 实验:金属丝电阻率的测量-物理人教版必修第三册
- 《登泰山记》课件
- 2024年宜昌市教育系统事业单位人才引进考试真题
- 2024年乳品评鉴师理论考试复习题库(含答案)
- 城市道路日常养护作业服务投标文件(技术方案)
- lululemon品牌洞察报告
- 基于RFID技术的煤矿机电设备运行监测系统研究
- 第八届全国职工职业技能大赛(焊工)辽宁选拔赛试题库-下(判断题)
- 12SG121-1 施工图结构设计总说明
评论
0/150
提交评论