




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BullRun-
FROMPERSONALIZATIONTOCUSTOMIZATION:
HARNESSINGDATAANDANALYTICSTOFOSTER
BRANDLOVE
retail
Tauchp@ints
SPECIALREPORT
SPONSOREDBY
IftiDigital-
INTRODUCTION
Forthesakeofmentalconvenience,peopleoftentalkabout“personalization”asifit’samonolithicconcept,
whenthetruthisthattherearemanyflavorsofpersonalizationavailabletoretailers.That’sactuallygoodnewsforbrands,whichcanmakestrategicchoicestoleveragedifferentvehiclesforpersonalizationdependingontheir
businessmodel,customerbaseandspecificneeds.InsomecasestheycantakepeshooaSliion-asltl.customization,whichnotonlygivescustomersgreatercontrolovertheirpurchasesbutalsorevealssignificant
datathatbrandscananalyzetocreateevensharperpersonalizationeffortsandboostfuturesales.
“Whilecustomizationallowscustomerstomakeproductalterationsatthetransactionpoint,personalizationisaholisticapproach,”saidBenjaminBond,PrincipalintheConsumerPracticeat
Kearney
inaninterviewwithRetailTouchPoints.“Itspanstheentirecustomerjourney,intelligentlyanticipatingneedsanddeliveringtailored
experiencesevenbeforethecustomerarticulatesthem.”
Thisspecialreportwillexaminethelatestpersonalizationandcustomizationtrends,including:
•ExpandingrolesforgenerativeAIinexecutingpersonalizationatkeypointsintheshopperjourney;
•Thefast-growingimportanceofzero-partyandfirst-partydatatosupportpersonalizationefforts,particularlyasthird-partycookiesdeprecate;and
•Bestpracticesformaximizingpersonalization.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove2
LimitlessVisions-
GENERATIVEAISUPERCHARGESPERSONALIZATIONCAMPAIGNS
GenerativeAI,thisyear’shottesttechnology,hasquicklybecomeacriticalelementinbrands’personalizationefforts,inlargepartbecauseithelpsmarketersscaleupprogramsquicklyandcost-effectively.
“GenerativeAIisthedrivingforcebehindadvancedpersonalization,transformingrawdataintoactionable
insights,”saidBond.“It’saboutpredictingcustomerneedsandmakinginformed,nuanceddecisionstodeliveronthepromiseofatrulytailoredshoppingexperience.”
AIandmachinelearninghavebeencriticaltopersonalizationeffortsby
GNC
.“Weknowthatinthehealthandwellnesscategory,offeringcustomizedproductstodeliverholistichealthsolutionsisparamount,”saidScottSaeger,formerCIOofGNCinapreviousinterviewwithRetailTouchPoints.
“Whenacustomercomesto,dotheyfeelthatGNCunderstandswhotheyareasaconsumerandthere’snotjustthisbarrageofadsandrecommendationsthatmeannothingtothem?”Saegerasked.“Inthebeginningoftheyear,alotofpeoplewanttotrimdownandlosetheThanksgivingandChristmasweight,soifallI’mdoingisthrowingproteinwheyatyou,that’sreallynottheexperienceyouwant.Beinghyper-personalizedisabout
makingtherightrecommendationsattherighttime.”
GNCalsosupportspersonalizationviaapartnershipwith
Ujet
.UsingmachinelearningandAI,thesolutiongivesGNC’scustomerserviceagentspertinentinformationaboutcustomersthatcangowellbeyondcheckingonanorder’sstatus.GNCusesthesolutiontoquicklyproviderelevantadvice,suchasthebestpost-workoutrecoverydrink,tohelpensureeverycustomerhasapositiveexperiencenomatterwhattheirqueryis.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove3
sebra-
WHYWEPUTPRODUCTFITATTHE
CENTEROFPERSONALIZATION
ByBrentHollowell,CMOandGMNorthAmerica,Volumental
Researchshowsthat78%ofconsumerswanttobedelightedbygreatpersonalizedexperiences,butonly18%sayretailcompaniesarecurrentlymeetingtheseexpectations.Webelievethatfittingtechnology,orFitTech,isapowerfultoolforretailerstomeetthegrowingdemandforpersonalized,customizedconsumerexperiences.
KnowYourCustomer
Volumentalspecializesinfittingtechnology,orFitTech.Wescanthefeetofshoeshoppersin3D,andthenwematchthatdatawithconsumerpurchasebehaviortogivetailoredrecommendations.Essentiallyweofferfitasaserviceasawayforbrandsandretailerstodeliverexcellentcustomerexperiences.
Withover45millionfootscanscollected,we'veamassedtheworld'slargestcollectionofsuchdata.Retailers
candeploytheirdataacrossin-store,omnichannelandecommerceoperations.Thisaccessibilityempowers
retailerstoprovideatailoredexperiencetoeachindividualcustomerbysuggestingthemostsuitablefootwearmodelsandsizesbasedontheinsightswe'vegathered.
Atthecoreofthiscapabilityliesfirst-partydata.Ofcourse,whenitcomestoutilizingdataforpersonalization,privacyandconsentarecritical.Whatwe'vefoundisthatshopperswillinglygrantconsenttosharetheir
informationbecausetheyseetheclearvalueitbrings.
Inphysicalstores,ourscannerspromptuserstooptinbyprovidingtheiremailaddress,andremarkably,our
emailcapturerateaverages71%,andforthehighestperformingretailers,itexceeds90%.Whenretailers
demonstratetheirabilitytostreamlinethebuyingprocess,customersaremorethanwillingtoreciprocatewiththeirtrustandengagement.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove4
ThePotentialofGenerativeAI
GenerativeAIhasthepotentialtoenhancehowwecommunicateproductrecommendationstoshoppers.
Imagineascenariowherearetailercanprovideamoredetailedexplanationbehindarecommendation.Forinstance,insteadofsimplysuggestingashoeinsize91⁄2overasize10,theycouldalsoclarifywhythischoicewasmade.Thisexplanationcouldberootedinfactorslikethecustomer'sheight,weightandintendeduse
fortheshoe.Dependingonusage,generativeAIcouldeventakeitastepfurtherbyconsideringyouruniquerunningstyleorthetypeofjobyouhave.Ultimately,theaimistogiveshoppersmoreconfidence,making
suretheytrustboththerecommendedsizeandthechosenproduct.
BackwhenIworkedatafootwearcompany,weusedtosendshoestofittesters,butwedidn'thaveaclue
abouttheiruniquefootshapes.Theresultswereallovertheplaceintermsofhowwelltheshoesfit.Butnowweactuallyscantheirfeet,sowhenwegettheirfeedback,weknowwhichshoeworkedforthemandwhichdidn't,andwhy.
Inthefuture,retailerscouldcombineallthisfootscandatatogetahandleonwhatalltheircustomers'
feetlooklike,whichcouldseriouslyimprovehowtheymanagetheirinventory.Theymightrealize,"Hey,wethoughtweneededonly13%ofsize91⁄2forthisshoe,butitturnsoutweneed20%."Sotheycantweak
inventorybasedonthesescansinsteadofusinghistoricalsalesnumbersonly,whichdon’treallycapturemissedsalesopportunities.
Andwithallthisdatainhand,retailerscanhavebetterconversationswiththeirmanufacturers.Iftheyseethatalotofpeopleareintodifferentwidthsofshoes,theycouldsuggestsomethinglike,"Insteadofmakingyetanothercolorforyoursixth-orseventh-bestperformingshoe,whynotoffermorewidthsforyourmostpopularstyles?"It'salmostlikepersonalizationinreverse—we'remakingthestore'sinventorymatchwhatcustomers'feetarereallylike.
Attheendoftheday,customizationisaboutbringingretailersandbuyersclosertogether.Whenweusedeepdataintherightway,wecanhelpretailersdeliverthosefantasticexperiencesthatshopperswantfromthem.
LearnmoreaboutVolumentalat
/.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove5
-
CANZERO-ANDFIRST-PARTYSOURCESFILL
PERSONALIZATION’SDATAREQUIREMENTS?
Becausepersonalizationgoesbeyondbasiccustomersegmentationandpersona-buildingefforts,itrequiresgranulardataattheindividuallevel.However,withthecomingdeprecationofthird-partycookies,oneofthemostcommonsourcesofconsumerbrowsingandpurchasingbehavior,brandsareturningtozero-andfirst-partydata.Zero-partydataisinformationconsumersintentionallysharewithabrand,e.g.whentakingaquiz,whilefirst-partydataiscollectedbythebrandasaresultofinteractionswithitsowncustomers.
Makinggreateruseofzero-andfirst-partydataalsohelpssolveoneofthetrickiestchallengespersonalizationpresents:finding(butnotcrossing)thelineofpersonalprivacy.Consumerswanttherelevanceandrecognitionthatpersonalizationeffortsoffer,buttheyalsodon’twanttofeelcreepedoutorspiedon.
“Utilizingzero-andfirst-partydataseamlesslyalignsvaluewithprivacy,”saidKearney’sBond.“Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fosteringtrustandpavingthepathforrespectfulpersonalization.”
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove6
For
Volumental
,whichprovidesfootwearfittechnologybasedonscansofcustomers’feet,thatdata-for-valueexchangeisclearlydelineated.“Thehardestthingtogetoutofacustomer[inastoreenvironment]istheiremailaddress,”saidBrentHollowell,CMOatVolumentalinaninterviewwithRetailTouchPoints.“Butwhenyoushowsomeoneacoolscanandaskifyoucanemailittothem,95outof100willagree,andthatgetsthemintothe
[retailer’s]loyaltymatrix.We’veseenpeoplegobackto[thatscan]fiveorsixtimesoverasix-monthperiod.”
In-storetechnologycanalsoserveasastealthybutacceptablemethodforgatheringshopperdata.Forexample,digitalmannequinsfrom
Outform
canbedressedinavarietyofclothingstylesandcolorsthatcustomerscontrolbyscanningaQRcode,providingin-storeinsightsintowhatshoppersareinterestedinseeingandpotentially
purchasing.Themannequintechnologypassivelyrecordsdataincludingdwelltime,numberofsessionsandcontentpreferences.
Becausethedigitalmannequincandirectlylinktoretailers’unifiedcommerceplatforms,executivesget“areal-timeviewofwhatshoppershaveconsideredandpurchased,”saidSimonHathaway,GroupManagingDirector,EMEAatOutformin
anearlierinterview
withRetailTouchPoints.“Theycanthenretargetacrossotheronlinechannelswithtailoredcontentatalatertime,usingA/Btestingtorefinetheinsightsfurther.”
“Utilizingzero-andfirst-partydataseamlesslyaligns
valuewithprivacy.Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fostering
trustandpavingthepathforrespectfulpersonalization.”
—BenjaminBond,Kearney
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove7
Antonio-
PERSONALIZATIONANDCUSTOMIZATIONBESTPRACTICES
Personalizationandcustomizationeffortsofferbigpayoffstoretailersandbrands,andtherearemanywaystomaximizethesecampaigns’impact:
•Seekmultiplesourcesofcustomerdata:Oneofthebestwaysforaretailertogatherfirst-partydataistooperatealoyaltyprogram.Butevenforthosethatdon’t,thereareothersourcesofcustomer
data:
TangerOutlets
recentlyrevampeditsloyaltyprogramintoatier-basedsubscriptionmodel
andisusinga
Coniq
solutiontosharedataaboutcustomerpreferences,patternsandspendwithitsretailtenants.
DoorDash’s
latestappupgradeincludesanintegratedrewardsprogramthatallowsmerchantsintheU.S.,Canada,AustraliaandNewZealandtocreateprogramsfortheirmostloyal
customers.Whiletheprogramwasn’tsetuptointegratewithrestaurants’loyaltyprogramsatitsdebut,that’salikelyfutureupdate.
•Alignpersonalizationeffortswithcustomerlifetimevalue(CLV)data:Eco-friendlyhaircare
brand
Davines
,dealingwiththelossofin-personcontactbroughtonbyCOVID,workedwith
Coveo
technologytogeneratepersonalizedproductrecommendationsbasedontheindividualshopper’spreviousshoppingjourneys,onlinebehaviorsandhaircarepreferences.Thetechnologyalsoallowed
DavinestofactorinCLV,accordingtoBrianMcGlynn,VPofEcommerceatCoveoinanearlierinterviewwithRetailTouchPoints:“Forexample,wheredoweseeusersthatmightbecominginandlooking
toexperiment?Thatmaybesignalsalong-termcustomer,andwecanapplyautomaticdiscounting,orusebadging,searchandpromotionstoenticesomebodytobecomeacustomer,tosampletheproductsortobemoreinvolvedinthispart.”
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove8
•Personalizationcanbeacompetitivedifferentiatorforsmall-andmid-sizeretailers:
LoopNeighborhood
,a120-storeconveniencechaininCalifornia,usedthe
Algonomy
platformtoengagecustomersinrealtimewithcontextuallyrelevantmessagesbasedontheirbehaviorand
transactionhistory.Theretailercanpromoteweeklyoffers,embedacustomer’ssavingsdashboard,distributepersonalizednewslettersandoffercuratedbundlestoappealtoeachindividual.
•Customizationisapowerfulpersonalizationaccelerant:Onlinebridalbrand
Azazie
usesamade-to-orderbusinessmodelthatalignswellwithcurrentconsumerexpectations.“OneofthekeythingswedoatAzazie,andabigindustrywidepush,ismorecustomizationandpersonalization,”saidRanuColeman,CMOofAzazieinanearlierinterviewwithRetailTouchPoints.“Modernbridesdon’talways
wanttofeelthepressureofasalespersontellingthemwhattheyshouldbuy,sowhatwehavedone
isdesignthiswholeprocesstobemoreonherterms.”Azaziemakesitsdressesavailableinsizesfromzeroto30andoffers70+fabriccolorsand500+styles,allowingfornear-infinitecustomizations—anditcandeliverthefinisheddressinthreetofourweeks,muchmorequicklythanthethreetofive
monthstypicallyneededformade-to-orderdresses.
Personalizationeffortsalsocanpayoffinmoresubtle,butnolessimportant,ways.“Personalizationseeds
thegroundforenhancedinsights,”saidKearney’sBond.“Insightsgleanedfrompersonalizedinteractionsfeedintoacycleofcontinuousimprovementandinnovationasconsumersengagewithpermutationsofofferingsalignedtoattributionmodels.”
GustavsMD-
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove9
LEARNMORE...
/contact
Imagineeffortlesslyfindingshoesthatfityouperfectly,everytime.That’swhatwedoatVolumental.Withourmarket-leadingfittingtechnology-FitTechf
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《数据分析方法》课件
- 《建筑材料企业概况》课件
- (二模)滨州市2025年高三高考诊断性测试政治试卷(含答案)
- 《张伟面部除皱》课件
- 《超纯水制备培训资料》课件
- 《经济体制改革探讨》课件
- 初中物理《力学与运动》课件
- 集成开放和创新
- 《节能风机系统》课件介绍
- 《进出口业务操作》课件
- 中国计算机的发展史新
- 53模拟试卷初中语文八年级下册第六单元素养综合检测
- 粮油食材配送投标方案(大米食用油食材配送服务投标方案)(技术方案)
- 新解读《JTGT 3660-2020公路隧道施工技术规范》
- 2024年全国职业院校技能大赛中职(服装设计与工艺赛项)考试题库(含答案)
- 某某医院信息化建设项目可行性研究报告
- 发电厂电气部分智慧树知到期末考试答案章节答案2024年东北电力大学
- 2024年株洲国创轨道科技有限公司招聘笔试冲刺题(带答案解析)
- 2024年山东省潍坊市二模化学试卷
- “超说明书用药”管理规定及流程
- 基于微信小程序的运动健身管理系统的设计与实现
评论
0/150
提交评论