基于APOS理论的数学概念教学设计_第1页
基于APOS理论的数学概念教学设计_第2页
基于APOS理论的数学概念教学设计_第3页
基于APOS理论的数学概念教学设计_第4页
基于APOS理论的数学概念教学设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于APOS理论的数学概念教学设计:以锐角三角函数概念为例陈丽君龙敏敏摘要:APOS理论是近年来美国数学家杜宾斯基(Dubinsky)等人提出的一种数学教学理论.他将数学概念的建立分为四个阶段:Action,Process,Object,Scheme,并用于指导教学实践.早期APOS理论只是被用在大学数学的教学中,现在该理论正逐步地渗透于我们的中学数学教学中.本文首先谈了对APOS理论的认识,然后通过锐角三角函数的教学设计尝试了一下APOS理论在数学概念教学中的应用.关键词:APOS理论;数学概念;教学设计;锐角三角函数任何一个数学教育中的理论或模型都应该致力于对“学生是如何学数学的”及“什么样的教学计划可以帮助这种学习”的理解,而不仅仅是陈述一些事实.基于这样的考虑,杜宾斯基等人建立了APOS理论—一个可以促进我们有效教学的数学教学理论.从20世纪90年代起,APOS理论就被介绍到我国的数学教育界,它是为数不多的依据数学学科特点而建立的教学理论,因此,对这样的理论进行深入的研究是十分有意义的.我国的数学概念教学大多采用“属+种差”的概念同化方式进行,这种教学过程虽然简明,但却忽视了许多数学概念具有过程—对象的双重性.近年来,相关学者的研究结果表明,将APOS理论应用到我们的概念教学中可以弥补我们一以前那种概念教学方式的缺点.什么是APOS理论?APOS理论是20世纪80年代末至90年代初由美国的杜宾斯基等人在数学教育研究实践中发展起来的一种数学教学理论.杜宾斯基认为,一个人是不可能直接学习到数学概念的.更确切地说,人们透过心智结构(mentalstructure)使所学习的数学概念产生意义.如果一个人对于给予的数学概念拥有适当的心智结构,那么他几乎自然就学到了这个概念.相反的,如果一个人无法建立起适当的心智结构,那么他学习数学概念几乎是不可能的.因此,教学的目的就在于如何帮助学生建立适当的心智结构.杜宾斯基等人认为,APOS理论可以看做是对皮亚杰的“反思性抽象(reflectiveabstraction)”的扩展.APOS理论的一个基本假设是:数学知识是个体在解决所感知到的数学问题的过程中获得的,在这个过程中,个体依序建构了心理活动(actions)、程序(processes)和对象(objects),最终组织成用以理解问题情境的图式结构(schemas).根据APOS理论,学生学习数学概念的心理建构过程要经历以下的四个阶段:活动(actions)阶段.“活动”是指个体通过一步一步的外显性(或记忆性)指令去变换一个客观的数学对象.例如在理解函数概念时需要活动或操作,对于,需要用具体的数字构造对应:通过操作活动理解函数的意义.程序(processes)阶段.当“活动”经过多次重复而被个体熟悉后,就可以内化为一种称之为“程序(processes)”的心理操作.有了这种“程序”,个体就可以想象这个“活动”,而不需要通过外部的刺激;他可以在头脑中实施这个程序,而不需要具体操作;进而,他还可以对这个程序进行逆转以及与其他程序进行组合.例如把上述例子中的操作活动综合为一个函数过程.一般地有其他的各种函数也可以概括为一般的对应过程.对象(objects)阶段.当个体能够把“程序”作为一个整体进行操作时,这一程序就变成了一种心理“对象(objects)”.接着上面的例子,然后可以把函数过程当作一个独立的对象来处理,比如函数的加减乘除、符合运算等.在表达式中,函数都是作为一个整体对象出现的.最后是“图式(或者说图式结构,schema)”.一个数学概念的“图式”是指由相应的“活动”、“程序”、“对象”以及与某些一般原理相联系的其他“图式”所形成的一种个体头脑中的认知框架,它可以用以解决与这个概念相关的问题.按照杜宾斯基的解释,上述四个成分中,“活动”、“程序”和“对象”也可以看作是数学知识的三种状态,而“图式”则是由这三种知识构成的一种认知结构(cottrill,etal.,1996).此外,上述四种成分的排列虽然在理论上具有一种等级结构,也就是说,一般情况下前一成分的建构是后一成分的基础,但实际上,个体对某个数学概念的理解并不一定遵循这种线性的途径.例如函数函数概念,学习者一开始的“活动”是把函数看作一个简单的公式,其中含有一些可以运算和赋值的字母变量;随后,函数被看作是一种可以“输入—输出”的机器(函数机),于是得到了初步的“程序”.但是当学生遇到更为复杂的函数表达式时,往往又回到了“活动”阶段,并在“活动”的基础上,又进一步完善了函数“程序”.如此经过多个循环之后,学生才最终形成明确而完整的函数“对象”.从数学学习心理学角度分析,APOS理论的四个学习层次是合理的,反应了学生学习数学概念过程中真实的思维活动.其中的“活动阶段”是学生理解概念的一个必要条件,通过“活动”让学生亲身体验、感受直观背景和概念间的关系.“程序阶段”是学生对“活动”进行思考,经历思维的内化、压缩过程,学生在头脑中对活动进行描述和反思,抽象出概念所特有的性质;“对象阶段”是通过前面的抽象认识到了概念本质,对其赋予形式化的定义及符号,使其达到精致化,成为一个具体的对象,在以后的学习中一次为对象进行新的活动;“图式阶段”的形成是要经过长期的学习活动进一步完善,,起初的图式包含反应概念的特例、抽象过程、定义及符号,经过学习,建立起与其他概念、规则、图形等的联系,在头脑中形成综合的心智结构.锐角三角函数概念的教学设计上课开始,出示两个倾斜角不同的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论