安徽省滁州市来安县大英中学高二数学理知识点试题含解析_第1页
安徽省滁州市来安县大英中学高二数学理知识点试题含解析_第2页
安徽省滁州市来安县大英中学高二数学理知识点试题含解析_第3页
安徽省滁州市来安县大英中学高二数学理知识点试题含解析_第4页
安徽省滁州市来安县大英中学高二数学理知识点试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市来安县大英中学高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义算式?:x?y=x(1﹣y),若不等式(x﹣a)?(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C. D.参考答案:D【考点】二次函数的性质.【专题】计算题.【分析】由已知中算式?:x?y=x(1﹣y),我们可得不等式(x﹣a)?(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x?y=x(1﹣y),∴若不等式(x﹣a)?(x+a)<1对任意x都成立,则(x﹣a)?(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.2.在等差数列{an}中,,,若(),则数列{bn}的最大值是(

)A.-3 B.C.1 D.3参考答案:D【分析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.3.曲线在点P处的切线的斜率为4,则P点的坐标为(

)(A)

(B)或

(C)

(D)或参考答案:B4.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A.

B.

C.

D.参考答案:B略5.四棱锥P﹣ABCD的所有侧棱长都为,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为()A. B. C. D.参考答案:A【考点】余弦定理的应用;异面直线及其所成的角.【分析】根据CD∥AB,∠PAB或其补角就是异面直线CD与PA所成的角,在△PAB中求出∠PAB的余弦值,即可得出CD与PA所成角的余弦值.【解答】解:∵正方形ABCD中,CD∥AB∴∠PAB或其补角就是异面直线CD与PA所成的角△PAB中,PA=PB=,AB=2∴cos∠PAB===即CD与PA所成角的余弦值为故选A6.直线(其中t为参数,)的倾斜角为(

) A.α B. C. D.参考答案:C考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:把直线的参数方程化为普通方程,再根据直线的斜率求出倾斜角.解答: 解:把直线(其中t为参数,)的参数方程化为普通方程是y+2=tan(α﹣)(x﹣1),其中0<α<;∴直线的斜率k=tan(α﹣)<0,∴倾斜角为π+(α﹣)=+α.故选:C.点评:本题考查了直线的参数方程的应用问题,解题时应把参数方程化为普通方程,是基础题目.7.已知各项均为正数的等比数列中,,,则(

)A.

B.7

C.6

D.(改编题)参考答案:A8.已知双曲线C:的离心率为2,左右焦点分别为F1、F2,点A在双曲线C上,若的周长为10a,则面积为()A. B. C. D.参考答案:B点在双曲线上,不妨设点在双曲线右支上,所以,又的周长为.得.解得.双曲线的离心率为,所以,得.所以.所以,所以为等腰三角形.边上的高为.的面积为.故选B.9.若随机变量X服从两点分布,其中P(X=0)=,则E(3X+2)和D(3X+2)的值分别是() A.4和4 B. 4和2 C. 2和4 D. 2和2参考答案:B略10.执行如图所示的程序框图,如果输入的,则输出的y=(

)A. B.0 C.2 D.3参考答案:D【分析】执行框图,依次写出每次循环所得x和y的值,并进行判断,即可得结果。【详解】输入x=11第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,退出循环,输出.【点睛】本题考查循环结构的程序框图,方法是依次写出每次循环所得x和y的值,并进行判断,属基础题。二、填空题:本大题共7小题,每小题4分,共28分11.若logmn=﹣1,则m+2n的最小值为_________.参考答案:12.某几何体的三视图如图所示,则它的侧面积是

.参考答案:13.已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.参考答案:考点:两条直线平行的判定.专题:计算题.分析:两直线平行,则方程中一次项系数之比相等,但不等于常数项之比,接解出m的值.解答:解:∵两直线平行,∴,故答案为﹣.点评:两直线平行时,直线方程中,一次项的系数对应成比例,但此比例不等于对应的常数项之比.14.直线3x﹣y+1=0在y轴上的截距是

.参考答案:【考点】直线的一般式方程.【分析】由直线x﹣3y+1=0,令x=0,解得y即可得出.【解答】解:由直线x﹣3y+1=0,令x=0,解得y=.∴直线在y轴上的截距是.故答案为:15.过点且与相切的直线方程为

.参考答案:16.圆的圆心的极坐标是

;半径是

.参考答案:;1.【考点】Q4:简单曲线的极坐标方程.【分析】把方程两边同时乘以ρ,转化为直角坐标方程,求出圆心的直角坐标和半径,再结合,x=ρcosθ求圆心的极坐标.【解答】解:由,得,∴,即.则圆心的直角坐标为(),半径为1.则,cosθ=,∵()在第一象限,∴θ=.∴圆心的极坐标是(1,).故答案为:;1.17.在△中,,,,则___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(16分)已知函数f(x)=lnx+ax,g(x)=ax2+2x,其中a为实数,e为自然对数的底数.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数y=f(x)的极大值为﹣2,求实数a的值;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到函数的极大值,从而求出a的值即可;(3)即a≥,设g(x)=,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可.【解答】解:(1)a=1时,f(x)=lnx+x,f′(x)=1+,f(1)=1,f′(1)=2,故切线方程是:y﹣1=2(x﹣1),即:2x﹣y﹣1=0;(2)f(x)的定义域是(0,+∞),f′(x)=+a=,a≥0时,f(x)在(0,+∞)递增,无极值,a<0时,令f′(x)>0,解得:x<﹣,令f′(x)<0,解得:x>﹣,故f(x)在(0,﹣)递增,在(﹣,+∞)递减,故f(x)的极大值是f(﹣)=ln(﹣)﹣1,若函数y=f(x)的极大值为﹣2,则ln(﹣)﹣1=﹣2,解得:a=﹣e;(3)若a<0,且对任意的x∈[1,e],f(x)≤g(x)恒成立,即x∈[1,e]时,ax2﹣lnx﹣(a﹣2)x≥0恒成立.即a≥,设g(x)=,则g′(x)=,当x>1时,g′(x)>0,∴g(x)在区间(1,+∞)上递增,∴当x∈[1,e]时,g(x)≤g(e)=,∴a<0,且对任意的.x∈[1,e],f(x)≥(a﹣2)x恒成立,∴实数a的取值范围为[,0).【点评】本题考查利用导数研究函数的极值以及由函数恒成立的问题求参数的取值范围,求解本题关键是记忆好求导的公式以及极值的定义,对于函数的恒成立的问题求参数,要注意正确转化,恰当的转化可以大大降低解题难度.19.(本小题满分12分)

上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示,

(I)在频率分布表中的①、②位置分别应填数据为

;在答题卡的图中补全频率分布直方图;

(Ⅱ)根据频率分布直方图估计这507名画师中年龄在[30,35)岁的人数(结果取整数);

(Ⅲ)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为ξ,求ξ的分布列及数学期望.参考答案:略20.已知函数f(x)=?,其中=(2cosx,﹣sin2x),=(cosx,1),x∈R(Ⅰ)求函数y=f(x)的单调递减区间;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a=,且向量=(3,sinB)与向量=(2,sinC)共线,求△ABC的面积.参考答案:【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(Ⅰ)根据题意,求出f(x)的解析式,利用三角函数的图象与性质求出f(x)的单调递减区间;(Ⅱ)由f(A)=﹣1得到A的值,由a=,结合余弦定理得①,由向量=(3,sinB)与向量=(2,sinC)共线,结合正弦定理得②,联立①②得b,c的值,再由三角形的面积公式计算得答案.【解答】解:(Ⅰ)=,令,解得:.∴函数y=f(x)的单调递减区间为;(Ⅱ)∵f(A)=﹣1,∴,即.∴.∴.又∵0<A<π,∴.∵,∴由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7

①∵向量与共线,∴2sinB=3sinC.由正弦定理得2b=3c

②由①②得b=3,c=2.∴.21.(本小题满分10分)已知直线的参数方程:

,曲线C的参数方程:(为参数),且直线交曲线C于A,B两点.(Ⅰ)将曲线C的参数方程化为普通方程,并求时,|AB|的长度,;:(Ⅱ)已知点P:(1,0),求当直线倾斜角变化时,的范围参考答案:(1)曲线C的普通方程

当时

|AB|(2)直线参数方程代入得

22.设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0,(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)由a=1得到命题p下的不等式,并解出该不等式,解出命题q下的不等式,根据p∧q为真,得到p真q真,从而求出x的取值范围;(2)先求出¬p,¬q,根据¬p是¬q的充分不必要条件,即可求出a的取值范围.【解答】解:(1)若a=1,解x2﹣4x+3<0得:1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论