版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
March2024
Mcsey
Quartery
AgenerativeAIreset:
Rewiringtoturnpotentialintovaluein2024
ThegenerativeAIpayoffmayonlycomewhencompaniesdodeeperorganizationalsurgeryontheirbusiness.
byEricLamarre,AlexSingla,AlexanderSukharevsky,andRodneyZemmel
It’stimeforagenerativeAI(genAI)reset.Theinitialenthusiasmandflurryofactivityin2023isgivingwaytosecondthoughtsandrecalibrationsascompaniesrealizethatcapturinggenAI’senormouspotentialvalueisharderthanexpected.
With2024shapinguptobetheyearforgenAItoproveitsvalue,companiesshould
keepinmindthehardlessonslearnedwithdigitalandAItransformations:competitiveadvantagecomesfrombuildingorganizationalandtechnologicalcapabilitiestobroadlyinnovate,deploy,andimprovesolutionsatscale—ineffect,rewiringthebusinessfor
distributeddigitalandAIinnovation.
CompanieslookingtoscoreearlywinswithgenAIshouldmovequickly.ButthosehopingthatgenAIoffersashortcutpastthetough—andnecessary—organizationalsurgery
arelikelytomeetwithdisappointingresults.Launchingpilotsis(relatively)easy;gettingpilotstoscaleandcreatemeaningfulvalueishardbecausetheyrequireabroadsetofchangestothewayworkactuallygetsdone.
Let’sbrieflylookatwhatthishasmeantforonePacificregiontelecommunications
company.ThecompanyhiredachiefdataandAIofficerwithamandateto“enablethe
organizationtocreatevaluewithdataandAI.”ThechiefdataandAIofficerworkedwith
thebusinesstodevelopthestrategicvisionandimplementtheroadmapfortheusecases.Afterascanofdomains(thatis,customerjourneysorfunctions)andusecaseopportunitiesacrosstheenterprise,leadershipprioritizedthehome-servicing/maintenancedomainto
pilotandthenscaleaspartofalargersequencingofinitiatives.Theytargeted,inparticular,thedevelopmentofagenAItooltohelpdispatchersandserviceoperatorsbetterpredict
thetypesofcallsandpartsneededwhenservicinghomes.
2
Leadershipputinplacecross-functionalproductteamswithsharedobjectivesand
incentivestobuildthegenAItool.Aspartofanefforttoupskilltheentireenterpriseto
betterworkwithdataandgenAItools,theyalsosetupadataandAIacademy,which
thedispatchersandserviceoperatorsenrolledinaspartoftheirtraining.Toprovide
thetechnologyanddataunderpinningsforgenAI,thechiefdataandAIofficeralso
selectedalargelanguagemodel(LLM)andcloudproviderthatcouldmeettheneedsofthedomainaswellasserveotherpartsoftheenterprise.ThechiefdataandAIofficer
alsooversawtheimplementationofadataarchitecturesothatthecleanandreliable
data(includingservicehistoriesandinventorydatabases)neededtobuildthegenAItoolcouldbedeliveredquicklyandresponsibly.
OurbookRewired:TheMcKinseyGuidetoOutcompetingintheAgeofDigitalandAI(Wiley,June2023)providesadetailedmanualonthesixcapabilitiesneededtodeliverthekindof
broadchangethatharnessesdigitalandAItechnology.Inthisarticle,wewillexplorehowtoextendeachofthosecapabilitiestoimplementasuccessfulgenAIprogramatscale.Whilerecognizingthatthesearestillearlydaysandthatthereismuchmoretolearn,ourexperiencehasshownthatbreakingopenthegenAIopportunityrequirescompaniestorewirehowtheyworkinthefollowingways.
FigureoutwheregenAIcopilotscangiveyouarealcompetitiveadvantage
ThebroadexcitementaroundgenAIanditsrelativeeaseofusehasledtoaburstof
experimentationacrossorganizations.Mostoftheseinitiatives,however,won’tgenerateacompetitiveadvantage.Onebank,forexample,boughttensofthousandsofGitHub
Copilotlicenses,butsinceitdidn’thaveaclearsenseofhowtoworkwiththetechnology,progresswasslow.Anotherunfocusedeffortweoftenseeiswhencompaniesmove
toincorporategenAIintotheircustomerservicecapabilities.Customerserviceisa
commoditycapability,notpartofthecorebusiness,formostcompanies.WhilegenAImighthelpwithproductivityinsuchcases,itwon’tcreateacompetitiveadvantage.
Tocreatecompetitiveadvantage,companiesshouldfirstunderstandthedifference
betweenbeinga“taker”(auserofavailabletools,oftenviaAPIsandsubscriptionservices),a“shaper”(anintegratorofavailablemodelswithproprietarydata),anda“maker”(abuilderofLLMs).Fornow,themakerapproachistooexpensiveformostcompanies,sothesweetspotforbusinessesisimplementingatakermodelforproductivityimprovementswhile
buildingshaperapplicationsforcompetitiveadvantage.
MuchofgenAI’snear-termvalueiscloselytiedtoitsabilitytohelppeopledotheir
currentjobsbetter.Inthisway,genAItoolsactascopilotsthatworksidebysidewithanemployee,creatinganinitialblockofcodethatadevelopercanadapt,forexample,ordraftingarequisitionorderforanewpartthatamaintenanceworkerinthefield
canreviewandsubmit(seesidebar“CopilotexamplesacrossthreegenerativeAI
archetypes”).Thismeanscompaniesshouldbefocusingonwherecopilottechnologycanhavethebiggestimpactontheirpriorityprograms.
3
Copilotexamplesacrossthree
generativeAI
archetypes
•“Taker”copilotshelp
realestatecustomers
siftthroughproperty
optionsandfindthemostpromisingone,write
codeforadeveloper,
andsummarizeinvestor
transcripts.
•“Shaper”copilotsprovide
recommendationstosales
repsforupsellingcustomersbyconnectinggenerativeAItoolstocustomerrelationshipmanagementsystems,
financialsystems,and
customerbehaviorhistories;createvirtualassistantsto
personalizetreatmentsforpatients;andrecommendsolutionsformaintenanceworkersbasedonhistoricaldata.
•“Maker”copilotsarefoundationmodels
thatlabscientistsat
pharmaceuticalcompaniescanusetofindandtest
newandbetterdrugs
morequickly.
Someindustrialcompanies,forexample,haveidentifiedmaintenanceasacriticaldomainfortheirbusiness.
Reviewingmaintenancereportsandspendingtimewithworkersonthefrontlinescanhelpdeterminewhere
agenAIcopilotcouldmakeabigdifference,suchas
inidentifyingissueswithequipmentfailuresquickly
andearlyon.AgenAIcopilotcanalsohelpidentify
rootcausesoftruckbreakdownsandrecommend
resolutionsmuchmorequicklythanusual,aswellas
actasanongoingsourceforbestpracticesorstandardoperatingprocedures.
Thechallengewithcopilotsisfiguringouthowto
generaterevenuefromincreasedproductivity.In
thecaseofcustomerservicecenters,forexample,companiescanstoprecruitingnewagentsanduseattritiontopotentiallyachieverealfinancialgains.
Definingtheplansforhowtogeneraterevenuefromtheincreasedproductivityupfront,therefore,iscrucialto
capturingthevalue.
Upskillthetalentyouhave
butbeclearaboutthegen-AI-specificskillsyouneed
Bynow,mostcompanieshaveadecentunderstandingofthetechnicalgenAIskillstheyneed,suchasmodelfine-tuning,vectordatabaseadministration,prompt
engineering,andcontextengineering.Inmany
cases,theseareskillsthatyoucantrainyourexistingworkforcetodevelop.ThosewithexistingAIand
machinelearning(ML)capabilitieshaveastronghead
start.Dataengineers,forexample,canlearnmultimodalprocessingandvectordatabasemanagement,MLOps(MLoperations)engineerscanextendtheirskillsto
LLMOps(LLMoperations),anddatascientistscan
developpromptengineering,biasdetection,andfine-tuningskills.
Thelearningprocesscantaketwotothreemonthsto
gettoadecentlevelofcompetencebecauseofthe
complexitiesinlearningwhatvariousLLMscanandcan’tdoandhowbesttousethem.Thecodersneedtogain
experiencebuildingsoftware,testing,andvalidating
4
answers,forexample.Ittookonefinancial-servicescompanythreemonthstotrainitsbestdatascientiststoahighlevelofcompetence.Whilecoursesanddocumentation
areavailable—manyLLMprovidershavebootcampsfordevelopers—wehavefound
thatthemosteffectivewaytobuildcapabilitiesatscaleisthroughapprenticeship,
trainingpeopletothentrainothers,andbuildingcommunitiesofpractitioners.Rotatingexpertsthroughteamstotrainothers,schedulingregularsessionsforpeopletoshare
learnings,andhostingbiweeklydocumentationreviewsessionsarepracticesthathaveprovensuccessfulinbuildingcommunitiesofpractitioners(seesidebar“AsampleofnewgenerativeAIskillsneeded”).
It’simportanttobearinmindthatsuccessfulgenAIskillsareaboutmorethancoding
proficiency.OurexperienceindevelopingourowngenAIplatform,Lilli,showedusthat
thebestgenAItechnicaltalenthasdesignskillstouncoverwheretofocussolutions,
contextualunderstandingtoensurethemostrelevantandhigh-qualityanswersare
generated,collaborationskillstoworkwellwithknowledgeexperts(totestandvalidate
answersanddevelopanappropriatecurationapproach),strongforensicskillstofigure
outcausesofbreakdowns(istheissuethedata,theinterpretationoftheuser’sintent,the
qualityofmetadataonembeddings,orsomethingelse?),andanticipationskillstoconceiveofandplanforpossibleoutcomesandtoputtherightkindoftrackingintotheircode.A
purecoderwhodoesn’tintrinsicallyhavetheseskillsmaynotbeasusefulateammember.
Whilecurrentupskillingislargelybasedona“learnonthejob”approach,weseearapid
marketemergingforpeoplewhohavelearnedtheseskillsoverthepastyear.Thatskill
growthismovingquickly.GitHubreportedthatdeveloperswereworkingongenAIprojects“inbignumbers,”andthat65,000publicgenAIprojectswerecreatedonitsplatformin
2023—ajumpofalmost250percentoverthepreviousyear.IfyourcompanyisjuststartingitsgenAIjourney,youcouldconsiderhiringtwoorthreeseniorengineerswhohavebuiltagenAIshaperproductfortheircompanies.Thiscouldgreatlyaccelerateyourefforts.
Formacentralizedteamtoestablishstandardsthatenableresponsiblescaling
ToensurethatallpartsofthebusinesscanscalegenAIcapabilities,centralizing
competenciesisanaturalfirstmove.Thecriticalfocusforthiscentralteamwillbeto
developandputinplaceprotocolsandstandardstosupportscale,ensuringthatteamscanaccessmodelswhilealsominimizingriskandcontainingcosts.Theteam’swork
couldinclude,forexample,procuringmodelsandprescribingwaystoaccessthem,developingstandardsfordatareadiness,settingupapprovedpromptlibraries,andallocatingresources.
WhiledevelopingLilli,ourteamhaditsmindonscalewhenitcreatedanopenplug-inarchitectureandsettingstandardsforhowAPIsshouldfunctionandbebuilt.They
developedstandardizedtoolingandinfrastructurewhereteamscouldsecurely
experimentandaccessaGPTLLM,agatewaywithpreapprovedAPIsthatteamscouldaccess,andaself-servedeveloperportal.Ourgoalisthatthisapproach,overtime,can
5
AsampleofnewgenerativeAI
skillsneeded
Thefollowingareexamplesofnewskillsneededforthe
successfuldeploymentof
generativeAItools:
•datascientist:
–promptengineering
–in-contextlearning
–biasdetection
–patternidentification
–reinforcementlearningfromhumanfeedback
–hyperparameter/largelanguagemodelfine-
tuning;transferlearning
•dataengineer:
–datawranglinganddatawarehousing
–datapipelineconstruction
–multimodalprocessing
–vectordatabasemanagement
helpshift“Lilliasaproduct”(thatahandfulofteamsusetobuildspecificsolutions)to“Lilliasaplatform”(thatteamsacrosstheenterprisecanaccesstobuildotherproducts).
ForteamsdevelopinggenAIsolutions,squad
compositionwillbesimilartoAIteamsbutwithdata
engineersanddatascientistswithgenAIexperienceandmorecontributorsfromriskmanagement,compliance,
andlegalfunctions.Thegeneralideaofstaffingsquadswithresourcesthatarefederatedfromthedifferent
expertiseareaswillnotchange,buttheskillcompositionofagen-AI-intensivesquadwill.
Setupthetechnologyarchitecturetoscale
BuildingagenAImodelisoftenrelativelystraightforward,butmakingitfullyoperationalatscaleisadifferentmatterentirely.We’veseenengineersbuildabasicchatbotin
aweek,butreleasingastable,accurate,andcompliantversionthatscalescantakefourmonths.That’swhy,ourexperienceshows,theactualmodelcostsmaybeless
than10to15percentofthetotalcostsofthesolution.
Buildingforscaledoesn’tmeanbuildinganewtechnologyarchitecture.Butitdoesmeanfocusingonafewcore
decisionsthatsimplifyandspeedupprocesseswithoutbreakingthebank.Threesuchdecisionsstandout:
•Focusonreusingyourtechnology.Reusingcode
canincreasethedevelopmentspeedofgenAIuse
casesby30to50percent.Onegoodapproachis
simplycreatingasourceforapprovedtools,code,
andcomponents.Afinancial-servicescompany,for
example,createdalibraryofproduction-gradetools,
whichhadbeenapprovedbyboththesecurityandlegalteams,andmadethemavailableinalibraryforteams
touse.Moreimportantistakingthetimetoidentifyandbuildthosecapabilitiesthatarecommonacrossthe
mostpriorityusecases.Thesamefinancial-services
company,forexample,identifiedthreecomponentsthatcouldbereusedformorethan100identifiedusecases.Bybuildingthosefirst,theywereabletogeneratea
significantportionofthecodebaseforalltheidentifiedusecases—essentiallygivingeveryapplicationabig
headstart.
6
•FocusthearchitectureonenablingefficientconnectionsbetweengenAImodels
andinternalsystems.ForgenAImodelstoworkeffectivelyintheshaperarchetype,theyneedaccesstoabusiness’sdataandapplications.Advancesinintegrationandorchestrationframeworkshavesignificantlyreducedtheeffortrequiredtomake
thoseconnections.Butlayingoutwhatthoseintegrationsareandhowtoenable
themiscriticaltoensurethesemodelsworkefficientlyandtoavoidthecomplexity
thatcreatestechnicaldebt(the“tax”acompanypaysintermsoftimeandresourcesneededtoredressexistingtechnologyissues).Chiefinformationofficersandchief
technologyofficerscandefinereferencearchitecturesandintegrationstandardsfortheirorganizations.Keyelementsshouldincludeamodelhub,whichcontainstrainedandapprovedmodelsthatcanbeprovisionedondemand;standardAPIsthatactas
bridgesconnectinggenAImodelstoapplicationsordata;andcontextmanagement
andcaching,whichspeedupprocessingbyprovidingmodelswithrelevantinformationfromenterprisedatasources.
•Buildupyourtestingandqualityassurancecapabilities.OurownexperiencebuildingLillitaughtustoprioritizetestingoverdevelopment.Ourteaminvestedinnotonly
developingtestingprotocolsforeachstageofdevelopmentbutalsoaligningtheentire
teamsothat,forexample,itwasclearwhospecificallyneededtosignoffoneachstageoftheprocess.Thissloweddowninitialdevelopmentbutspeduptheoveralldelivery
paceandqualitybycuttingbackonerrorsandthetimeneededtofixmistakes.
Ensuredataqualityandfocusonunstructureddatatofuelyourmodels
TheabilityofabusinesstogenerateandscalevaluefromgenAImodelswilldependonhowwellittakesadvantageofitsowndata.Aswithtechnology,targetedupgradesto
existingdataarchitectureareneededtomaximizethefuturestrategicbenefitsofgenAI:
•Betargetedinrampingupyourdataqualityanddataaugmentationefforts.While
dataqualityhasalwaysbeenanimportantissue,thescaleandscopeofdatathatgen
AImodelscanuse—especiallyunstructureddata—hasmadethisissuemuchmore
consequential.Forthisreason,it’scriticaltogetthedatafoundationsright,from
clarifyingdecisionrightstodefiningcleardataprocessestoestablishingtaxonomiessomodelscanaccessthedatatheyneed.Thecompaniesthatdothiswelltietheir
dataqualityandaugmentationeffortstothespecificAI/genAIapplicationanduse
case—youdon’tneedthisdatafoundationtoextendtoeverycorneroftheenterprise.
Thiscouldmean,forexample,developinganewdatarepositoryforallequipment
specificationsandreportedissuestobettersupportmaintenancecopilotapplications.
•Understandwhatvalueislockedintoyourunstructureddata.Mostorganizationshave
traditionallyfocusedtheirdataeffortsonstructureddata(valuesthatcanbeorganizedintables,suchaspricesandfeatures).ButtherealvaluefromLLMscomesfromtheirabilitytoworkwithunstructureddata(forexample,PowerPointslides,videos,and
text).Companiescanmapoutwhichunstructureddatasourcesaremostvaluableandestablishmetadatataggingstandardssomodelscanprocessthedataandteamscan
7
findwhattheyneed(taggingisparticularlyimportanttohelpcompaniesremovedatafrommodelsaswell,ifnecessary).Becreativeinthinkingaboutdataopportunities.Somecompanies,forexample,areinterviewingsenioremployeesastheyretire
andfeedingthatcapturedinstitutionalknowledgeintoanLLMtohelpimprovetheircopilotperformance.
•Optimizetolowercostsatscale.Thereisoftenasmuchasatenfolddifference
betweenwhatcompaniespayfordataandwhattheycouldbepayingiftheyoptimized
theirdatainfrastructureandunderlyingcosts.Thisissueoftenstemsfromcompanies
scalingtheirproofsofconceptwithoutoptimizingtheirdataapproach.Twocosts
generallystandout.Oneisstoragecostsarisingfromcompaniesuploadingterabytes
ofdataintothecloudandwantingthatdataavailable24/7.Inpractice,companies
rarelyneedmorethan10percentoftheirdatatohavethatlevelofavailability,and
accessingtherestovera24-or48-hourperiodisamuchcheaperoption.Theother
costsrelatetocomputationwithmodelsthatrequireon-callaccesstothousandsof
processorstorun.Thisisespeciallythecasewhencompaniesarebuildingtheirown
models(themakerarchetype)butalsowhentheyareusingpretrainedmodelsand
runningthemwiththeirowndataandusecases(theshaperarchetype).Companies
couldtakeacloselookathowtheycanoptimizecomputationcostsoncloudplatforms—
forinstance,puttingsomemodelsinaqueuetorunwhenprocessorsaren’tbeingused(suchaswhenAmericansgotobedandconsumptionofcomputingserviceslikeNetflixdecreases)isamuchcheaperoption.
Buildtrustandreusabilitytodriveadoptionandscale
BecausemanypeoplehaveconcernsaboutgenAI,thebaronexplaininghowthesetoolsworkismuchhigherthanformostsolutions.Peoplewhousethetoolswanttoknowhowtheywork,notjustwhattheydo.Soit’simportanttoinvestextratimeandmoneytobuildtrustbyensuringmodelaccuracyandmakingiteasytocheckanswers.
Oneinsurancecompany,forexample,createdagenAItooltohelpmanageclaims.As
partofthetool,itlistedalltheguardrailsthathadbeenputinplace,andforeachanswerprovidedalinktothesentenceorpageoftherelevantpolicydocuments.ThecompanyalsousedanLLMtogeneratemanyvariationsofthesamequestiontoensureanswer
consistency.Thesesteps,amongothers,werecriticaltohelpingendusersbuildtrustinthetool.
PartofthetrainingformaintenanceteamsusingagenAItoolshouldbetohelpthem
understandthelimitationsofmodelsandhowbesttogettherightanswers.Thatincludes
teachingworkersstrategiestogettothebestanswerasfastaspossiblebystartingwith
broadquestionsthennarrowingthemdown.Thisprovidesthemodelwithmorecontext,
anditalsohelpsremoveanybiasofthepeoplewhomightthinktheyknowtheanswer
already.Havingmodelinterfacesthatlookandfeelthesameasexistingtoolsalsohelps
usersfeellesspressuredtolearnsomethingneweachtimeanewapplicationisintroduced.
Gettingtoscalemeansthatbusinesseswillneedtostopbuildingone-o
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/Z 3480.31-2025直齿轮和斜齿轮承载能力计算第31部分:微点蚀承载能力算例
- 2026江苏苏州实验室财务管理与服务部管理人员招聘考试参考题库及答案解析
- 2026年陕西户县海丝村镇银行高校见习生招聘考试参考试题及答案解析
- 2026广东汕头市龙湖区应急管理局招聘安全生产监督检查专项临聘人员3人考试备考试题及答案解析
- 2026安徽淮北市特种设备监督检验中心招聘专业技术人员4人考试参考题库及答案解析
- 2026西安雁塔区大雁塔社区卫生服务中心招聘(4人)考试参考题库及答案解析
- 2026安徽马鞍山市疾病预防控制中心招聘博士研究生1人考试参考题库及答案解析
- 2026浙江嘉兴市秀拓燃气有限公司招聘笔试、面谈考试备考试题及答案解析
- 2026四川省隆昌市城关职业中学招聘2人考试备考题库及答案解析
- 2026广西河池市金城江区大数据发展局招聘编外工作人员1人考试备考试题及答案解析
- 股东代为出资协议书
- 财务部门的年度目标与计划
- 消防管道拆除合同协议
- 四川省森林资源规划设计调查技术细则
- 银行外包服务管理应急预案
- DB13T 5885-2024地表基质调查规范(1∶50 000)
- 2025年度演出合同知识产权保护范本
- 青少年交通安全法规
- 区块链智能合约开发实战教程
- 2025年校长考试题库及答案
- 口腔进修申请书
评论
0/150
提交评论