




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆沙坪坝区实验中学2022-2023学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.任何一个算法都离不开的基本结构为(
)A.逻辑结构
B.条件结构
C.
循环结构
D.顺序结构参考答案:D2.已知随机变量服从二项分布,则等于A. B. C. D.参考答案:D.3.在等边三角形内任取一点,则点M落在其内切圆内部的概率是()ABCD参考答案:C4.现安排甲乙丙丁戊5名学生分别担任语文、数学、英语、物理、化学学科的科代表,要求甲不当语文课代表,乙不当数学课代表,若丙当物理课代表则丁必须当化学课代表,则不同的选法共有多少种(
)A、53
B、67
C、85
D、91参考答案:B5.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是()A.函数y=f(x)在(﹣∞,0)上单调递增B.函数y=f(x)的递减区间为(3,5)C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值参考答案:D【考点】利用导数研究函数的单调性.【分析】利用导数与函数单调性的关系以及函数在某点取得极值的条件即可判断.【解答】解:由函数y=f(x)导函数的图象可知:当x<﹣1及3<x<5时,f′(x)<0,f(x)单调递减;当﹣1<x<3及x>5时,f′(x)>0,f(x)单调递增.所以f(x)的单调减区间为(﹣∞,﹣1),(3,5);单调增区间为(﹣1,3),(5,+∞),f(x)在x=﹣1,5取得极小值,在x=3处取得极大值.故选D.6.为方程的解是为函数f(x)极值点的(
)
A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件参考答案:D略7.已知数列满足,则(
)
A.0
B.
C.
D.6参考答案:B8.若数列是等差数列,是方程的两根,则
.参考答案:39.曲线y=x3﹣2在点(1,﹣)处切线的斜率为()A. B.1 C.﹣1 D.参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】求曲线在某点处的切线的斜率,就是求曲线在该点处的导数值,先求导函数,然后将点的坐标代入即可求得结果.【解答】解:y=x3﹣2的导数为:y′=x2,将点(1,﹣)的横坐标代入,即可得斜率为:k=1.故选:B.10.已知,是单位向量,且与夹角为,则等于(A)
(B)
(C)
(D)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.(理科学生做)现从8名学生中选出4人去参加一项活动,若甲、乙两名同学不能同时入选,则共有
种不同的选派方案.(用数字作答)参考答案:5512.已知P是椭圆和双曲线的一个共公点,F1,F2是椭圆和双曲线的公共焦点,e1,e2分别为椭圆和双曲线的离心率,若,则的最大值是_________.参考答案:【分析】设,利用椭圆和双曲线的定义,求出的值,利用余弦定理得出等式,利用三角代换求出的最大值。【详解】设,由椭圆的定义可知:(1),由双曲线的定义可知:(2),得:,得:,由余弦定理可知:,设所以,当时,的最大值是。【点睛】本题考查了椭圆、双曲线的定义。重点考查了三角代换、余弦定理、辅助角公式。13.已知复数z满足(i为虚数单位),则________.参考答案:【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由题意,复数,可得,所以.故答案为:.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数的基本概念,着重考查了推理与运算能力,属于基础题.14.定积分的值为_________________.参考答案:1略15.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是
.参考答案:考点:由三视图求面积、体积.专题:计算题.分析:几何体是三棱锥,结合三视图判断知:三棱锥的高为1,底面是直角边长为1的等腰直角三角形,把数据代入棱锥的体积公式计算.解答: 解:由三视图可知:几何体是三棱锥,∵正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,∴三棱锥的高为1,底面是直角边长为1的等腰直角三角形,∴几何体的体积V=××1×1×1=.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键.16.在数列{an}中,a1=3,an+1=an+,则通项公式an=.参考答案:4﹣【考点】数列的求和.【分析】由已知可得,an+1﹣an==,然后利用叠加法即可求解【解答】解:∵an+1﹣an==∴…an﹣an﹣1=以上n﹣1个式子相加可得,an﹣a1=∵a1=3,∴故答案为:4﹣17.已知数列{an}为正项等差数列,其前9项和,则的最小值为
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某工厂拟建一座平面图为矩形,面积为的三段式污水处理池,池高为1,如果池的四周墙壁的建造费单价为元,池中的每道隔墙厚度不计,面积只计一面,隔墙的建造费单价为元,池底的建造费单价为元,则水池的长、宽分别为多少米时,污水池的造价最低?最低造价为多少元?参考答案:解:设污水池的宽为,则长为,水池的造价为元,则由题意知:定义域为,当且仅当,取“=”,此时长为18m,答:污水池的长宽分别为18m,时造价最低,为44800元.
略19.某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.组号分组频数频率第1组[160,165)50.050第2组[165,170)①0.350第3组[170,175)30②第4组[175,180)200.200第5组[180,185)100.100合计1001.00(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?参考答案:【考点】频率分布直方图.【专题】计算题;作图题.【分析】(1)由频率的意义可知,每小组的频率=,由此计算填表中空格;(2)先算出第3、4、5组每组学生数,分层抽样得按比例确定每小组抽取个体的个数,求得第3、4、5组每组各抽取多少名学生进入第二轮面试.(3)根据概率公式计算,事件“六位同学中抽两位同学”有15种可能,而且这些事件的可能性相同,其中事件“第4组的2位同学为B1,B2至少有一位同学入选”可能种数是9,那么即可求得事件A的概率.【解答】解:(1)由题可知,第2组的频数为0.35×100=35人,第3组的频率为,频率分布直方图如图所示:(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),其中第4组的2位同学为B1,B2至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(B1,B2),(A3,B2),(B1,C1),(B2,C1),9中可能,所以其中第4组的2位同学为B1,B2至少有一位同学入选的概率为.【点评】此题考查了对频数分布直方图的掌握情况,考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B。(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点且A1B∥平面B1CD,求A1D:DC1的值。参考答案:(1)∵四边形是菱形∴⊥……2分又∵∴⊥平面………………4分∴平面………6分(2)若与相交于O,连接DO…………7分∵
∴…………9分又∵O为的中点
∴D为的中点………11分∴的值为1……12分21.已知命题:方程表示的曲线为椭圆;命题:方程表示的曲线为双曲线;若或为真,且为假,求实数的取值范围.参考答案:若真,则,得;若真,则,得;由题意知,、一真一假若真假
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南昌工学院《民间文学研究》2023-2024学年第一学期期末试卷
- 唐山海运职业学院《园林法规》2023-2024学年第二学期期末试卷
- 山西中医药大学《影视剧配音》2023-2024学年第一学期期末试卷
- 江苏省镇江市丹徒区市级名校2024-2025学年新初三开学摸底考(全国I卷)生物试题含解析
- 武汉外语外事职业学院《跨境电商》2023-2024学年第二学期期末试卷
- 江苏省南京市江宁区高级中学2025届高三第二次质量考评化学试题试卷含解析
- 天津交通职业学院《经济线性规划》2023-2024学年第二学期期末试卷
- 2025年中级会计师行业法规考试试题及答案
- 四平职业大学《私教小器械运用》2023-2024学年第二学期期末试卷
- 四川体育职业学院《网络安全技术与应用》2023-2024学年第二学期期末试卷
- 文化传承之旅:中国音乐与中国故事智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 第17课 第二次世界大战与战后国际秩序的形成 教学设计 高中历史统编版(2019)必修中外历史纲要下册
- 特种设备“日管控、周排查、月调度”表格
- 汇川技术在线测评题库
- 标准预防及分级防护
- 介绍钱三强的
- 多元智能理论与学科融合
- 走进音乐世界三年级上册《风铃》课件
- 2024年茂名市高三第一次综合测试(一模)化学试卷(含答案)
- 危险性较大的分部分项工程一览表(建办质〔2018〕31号)
- 个人租车简易协议书电子版
评论
0/150
提交评论