




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市彭州中学2022-2023学年高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知数列{an}满足递推关系:,,则=()A. B. C. D.参考答案:D【分析】对递推关系式取倒数,可证得数列是以2为首项,1为公差的等差数列;利用等差数列通项公式可求得,进而得到结果.【详解】由得:,即又,则数列是以2为首项,1为公差的等差数列
本题正确选项:【点睛】本题考查倒数法求解数列通项公式的问题,关键是能够通过取倒数的方式能够得到等差数列,从而利用等差数列的知识来进行求解.2.高考来临之际,食堂的伙食进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食,每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,则不同的食物搭配方案种数为(
)
A、132
B、180
C、240
D、600参考答案:B
【考点】排列、组合的实际应用
【解答】解:根据题意,分2步进行分析:
①、先在5人中任选一人,选择花卷,有C51=5种情况,
②、剩余4人选择其余三种食物,先将4人分成3组,有=6种分组方法,
将分好的3组全排列,对应三种食物,有A33=6种情况;
则不同的食物搭配方案有5×6×6=180种;
故选:B.
【分析】根据题意,分2步进行分析:①、先在5人中任选一人,选择花卷,②、剩余4人选择其余三种食物,此时要先将4人分成3组,再将分好的3组全排列,对应三种食物;分别求出每一步的情况数目,进而由分步计数原理计算可得答案.
3.已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则=(
)A.2
B.4
C.6
D.8参考答案:D略4.dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln2参考答案:D【考点】定积分.【分析】根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.【解答】解:∵(lnx)′=∴=lnx|24=ln4﹣ln2=ln2故选D5.在空间四边形中,分别是的中点。若,若四边形的面积为,则异面直线与所成的角为(
)、
、;
、;
、或。参考答案:B6.执行如图所示的程序框图,输出的s值为()A.-3
B.-
C.
D.2参考答案:D7.设,集合是奇数集,集合是偶数集.若命题,则
() A. B. C. D.参考答案:C8.如图,圆O的半径为定长r,A是圆O内的一定点,P为圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆周上运动时,点Q的轨迹是()A.直线 B.圆 C.椭圆 D.双曲线参考答案:C【考点】轨迹方程.【分析】由线段AP的垂直平分线l与半径OP相交于点Q,可得QA=QP,进而可得OQ+QA=r,从而曲线是以A、O为焦点,长轴长为r的椭圆.【解答】解:由题意:QA=QP,∵OP=OQ+QP=r,∴OQ+QA=r.A是圆O内的一定点,r>|OA|,故曲线是以A、O为焦点,长轴长为r的椭圆,故选:C.9.已知与之间的一组数据如下表,根据表中提供的数据,求出关于的线性回归方程为
34562.5344.5
,那么
的值为(
)
A.
0.5
B.
0.6
C.
0.7
D.
0.8
参考答案:C略10.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是
A.3x+2y-1=0
B.3x+2y+7=0C.2x-3y+5=0
D.2x-3y+8=0参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知p:,q:且,则p是q的
条件.(在“充要、充分不必要、必要不充分、既不充分也不必要”中选一个)参考答案:必要不充分12.过点(1,2)且在两坐标轴上的截距相等的直线的方程__________
.参考答案:y=2x或x+y-3=0略13.如图,在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P为底面ABCD所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为(均不为0),若,则点P到直线AD的距离的最大值是(
)A.
B.2
C.
D.3参考答案:B14.
__________。参考答案:1015.已知是复数,定义复数的一种运算“”为:z=,若且,则复数
参考答案:略16.已知下列命题(其中a,b为直线,α为平面):①若一条直线垂直于平面内无数条直线,则这条直线与这个平面垂直;②若一条直线平行于一个平面,则垂直于这条直线的直线一定垂直于这个平面;③若a∥α,b⊥α,则a⊥b;④若a⊥b,则过b有惟一α与a垂直.上述四个命题中,是真命题的有.(填序号)参考答案:③④【考点】空间中直线与平面之间的位置关系.【分析】①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,故②错误.若a∥α,b⊥α,则根据线面平行、垂直的性质,必有a⊥b.【解答】解:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则根据线面平行、垂直的性质,必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故答案为③④.17.用数学归纳法证明命题:1+2+3+…+(n﹣1)+n+(n﹣1)+…+3+2+1=n2,当从k到k+1时左边增加的式子是
.参考答案:2k+1【考点】数学归纳法.【分析】分别计算当n=k时,以及n=k+1时,观察计算即可【解答】解:从n=k到n=k+1时,左边添加的代数式为:k+1+k=2k+1.故答案为:2k+1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若在(e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.参考答案:【考点】6K:导数在最大值、最小值问题中的应用;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)先求出其导函数,求出切线斜率,即可求曲线f(x)在x=1处的切线方程;(Ⅱ)先求出函数h(x)的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(Ⅲ)先把f(x0)<g(x0)成立转化为h(x0)<0,即函数在上的最小值小于零;再结合(Ⅱ)的结论分情况讨论求出其最小值即可求出a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),当a=1时,f(x)=x﹣lnx,,f(1)=1,f'(1)=0,切点(1,1),斜率k=0∴曲线f(x)在点(1,1)处的切线方程为y=1(Ⅱ),∴h′(x)=①当a+1>0时,即a>﹣1时,在(0,1+a)上h'(x)<0,在(1+a,+∞)上h'(x)>0,所以h(x)在(0,1+a)上单调递减,在(1+a,+∞)上单调递增;②当1+a≤0,即a≤﹣1时,在(0,+∞)上h'(x)>0,所以,函数h(x)在(0,+∞)上单调递增.(Ⅲ)在上存在一点x0,使得f(x0)<g(x0)成立,即在上存在一点x0,使得h(x0)<0,即函数在上的最小值小于零.由(Ⅱ)可知:①1+a≥e,即a≥e﹣1时,h(x)在上单调递减,所以h(x)的最小值为h(e),由h(e)=e+﹣a<0可得a>,因为>e﹣1,所以a>;②当1+a≤1,即a≤0时,h(x)在上单调递增,所以h(x)最小值为h(1),由h(1)=1+1+a<0可得a<﹣2;③当1<1+a<e,即0<a<e﹣1时,可得h(x)最小值为h(1+a),因为0<ln(1+a)<1,所以,0<aln(1+a)<a故h(1+a)=2+a﹣aln(1+a)>2此时,h(1+a)<0不成立综上可得所求a的范围是:a>或a<﹣2.19.已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称。参考答案:解析:设,的中点,而相减得即,而在椭圆内部,则即。20.已知抛物线C的一个焦点为F(,0),对应于这个焦点的准线方程为x=-.(1)写出抛物线C的方程;(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;(3)点P是抛物线C上的动点,过点P作圆(x-3)2+y2=2的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.参考答案:解析:(1)抛物线方程为:y2=2x.(2)①当直线不垂直于x轴时,设方程为y=k(x-),代入y2=2x,得:k2x2-(k2+2)x+.设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=k(x1+x2-1)=.设△AOB的重心为G(x,y)则,消去k得y2=为所求,②当直线垂直于x轴时,A(,1),B(,-1),△AOB的重心G(,0)也满足上述方程.综合①②得,所求的轨迹方程为y2=,(3)设已知圆的圆心为Q(3,0),半径r=,根据圆的性质有:|MN|=2.当|PQ|2最小时,|MN|取最小值,设P点坐标为(x0,y0),则y=2x0.|PQ|2=(x0-3)2+y=x-4x0+9=(x0-2)2+5,∴当x0=2,y0=±2时,|PQ|2取最小值5,故当P点坐标为(2,±2)时,|MN|取最小值21.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,,且D为线段BC的中点.(1)证明:BC⊥平面PAD;(2)若,求平面PAB与平面PDE所成角的正弦值.参考答案:(1)证明:因为,为线段的中点,所以.又两两垂直,且所以平面,则.因为,所以平面.(2)解:以为坐标原点,建立如图所示的空间直角坐标系,则.∵,∴可设,则,∴,则,设平面的法向量为,则,即令,得.平面的一个法向量为,则.故平面与平面所成二面角的正弦值为.22.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4﹣x万元,且每万件国家给予补助2e﹣﹣万元.(e为自然对数的底数,e是一个常数)(Ⅰ)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式(Ⅱ)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本)参考答案:【考点】6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)由月利润=月销售收入+月国家补助﹣月总成本,即可列出函数关系式;(2)利用导数判断函数的单调性,进而求出函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版企业员工期望企业文化塑造与传承合同
- 2025德宏州林业草原局信息公开专栏绿色低碳发展研究与推广合同
- 2025年度网络安全防护服务人员劳务合同
- 2025年度水域使用权产权归属协议范本
- 2025版股权投资担保合同模板
- 2025版私人抵押车辆买卖合同细则
- 2025版工业园区企业租赁及优惠政策实施合同
- 2025版室内设计店长艺术创新聘用合同
- 2025版汽车烤漆房租赁及环保涂料研发合作协议
- 2025厕所施工合同范本:民宿客栈卫生间改造工程协议
- 高速互连连接器及组件技术发展趋势-立讯陈琼南
- 高一英语练字字帖
- 《SPC统计过程控制》课件
- GB/T 3624-2010钛及钛合金无缝管
- GB/T 14153-1993硬质塑料落锤冲击试验方法通则
- (完整版)人教版八年级下册《道德与法治》期末测试卷及答案【新版】
- 维护新疆稳定 实现长治久安课件
- 北京大学人民医院-医疗知情同意书汇编
- 档案管理员述职报告9篇
- 舞台灯光基础知识教学课件
- 牙体牙髓病最全课件
评论
0/150
提交评论