




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EMERGING
SPACE
BRIEFCarbon
NanotubesAli
JavaheriAnalyst,
Emerging
Technologyali.javaheri@Originally
published
on
January
18,
2024pbinstitutionalresearch@Trending
companiesOverviewCarbon
nanotubes(CNTs)
arenanoscalesheets
ofgraphene
rolledintoacylindricaltube.
CNTs
havespecialfeaturesand
abilities,some
ofwhicharesimilartographitewhileotherscomefromtheirtube-like,one-dimensionalshape.
Depending
on
theirspecificstructure,
CNTs
can
behavelikemetalsor
semiconductors,
whicharekeyinelectronicdevices.MetallicCNTs,inparticular,can
conduct
electricity
over1000xbetter
thancommon
metals,
suchas
copper.Theyhaveauniquewayofconductingelectricity
thatmakesthemextremely
efficient
and
mobile,
surpassingmanystandardsemiconductors.CarbonnanotubesVCdealactivityCNTs
aremuch
strongerthansteel,and
theyconduct
heat
better
thandiamond.Theyalsohaveavery
highsurface
arearelativetotheirsize,whichmakesthemquitelightand
strong.CNTs
arealsohighlystableand
can
resistmost
chemicalreactions,
unlesstheyareexposed
tohighheat
and
oxygen.These
propertiesmakeCNTs
excellentforawiderangeofapplications,includingvariouselectronic37353534components,
sensors,
batteries,
and
materialsforprotectingagainst
electricity.12219BackgroundThe
historyofCNTs
isatapestry
ofdiscoveryand
debate.The
material’soriginscan
be
tracedback
to1952when
SovietscientistsL.V.
Radushkevichand
V.M.Lukyanovichpublishedimagesofnanometer-sizedcarbon
tubes,
thoughthisearlyworkwaslargelyoverlookeddue
tolimitedaccesstoSovietscientificresearchfor2018
2019
2020
2021
2022
2023*Deal
value($M)
Deal
countWesterncolleagues.
The
term“carbonnanotubes”wascoinedbySumioIijimain21991
when
he
observed
needle-likecarbon
structures
under
anelectron
microscope,whichhe
identifiedas
multiwalledcarbon
nanotubes.
Single-walledvariantswerediscoveredshortly
after
in1993.
The
theoreticalpredictionsand
subsequentexperimentalconfirmationsofCNTs’
uniqueelectrical
properties
fueled
asurgeinresearchand
potentialindustrialapplications,makingthemacornerstoneofSource:
PitchBook
•
Geography:
Global*AsofJanuary
9,2024nanotechnology
and
materialsscience.31:“Carbon
Nanotube,”
ScienceDirect,
Waqar
Ahmed,
et
al.,
n.d.,
accessed
January
10,
2024.2:
“ABrief
Introduction
ofCarbon
Nanotubes:
History,
Synthesis,
and
Properties,”
IOP
Publishing,
Junqi
Chen,
et
al.,
2021.3:
“Sumio
Iijima,”
International
Balzan
PrizeFoundation,
n.d.,
accessed
January
10,
2024.1Emerging
Space
Brief:
Carbon
NanotubesTechnologies
andprocessesTypes
of
carbonnanotubesSingle-walledand
multiwalledcarbon
nanotubesarethetwomaintypes
ofCNTs,withthethirdtype
beingtheless-commondouble-walledCNT.Single-walled
carbon
nanotubes(SWNTs):
These
nanotubesarecomposed
ofasinglelayerofgraphene
rolledintoacylindricalshape.
Theyareknownfortheirremarkableelectrical
properties,
whichcan
vary
frommetallictosemiconductingdepending
on
theirgeometry
and
diameter.SWNTstypicallyhavediametersrangingfromabout
1to2nanometers.
Due
totheiruniformstructure,
theyoffer
highaspectratiosand
exceptionalmechanicalstrength,
makingthemidealforapplicationsinnanoelectronics,
sensors,
and
variouscompositematerials.4Multiwalledcarbon
nanotubes(MWNTs):
Thistype
ofnanotubeconsistsofmultiplelayersofgraphene,
each
formingaconcentrictubearoundtheother,resemblingasetofnestedcylinders.
Theygenerallyhavediametersrangingfrom7to100
nanometers.
MWNTs
areknownfortheirincreasedthermaland
electricalconductivity
comparedwithSWNTs,but
theyhavefeweruniformelectronicproperties.
Their
multilayeredstructureprovidesenhanced
mechanicalstrength,whichisbeneficialforapplicationsinmaterialsreinforcement,energy
storage,andnanodevices.5Double-walled
carbon
nanotubes(DWNTs):
Thisvariantisaspecialtype
ofMWNTthathasexactlytwoconcentricgraphene
layers.Theycombinesome
properties
ofbothSWNTsand
MWNTs,offeringabalancebetween
thestrength
and
flexibilityofMWNTs
and
theelectrical
properties
ofSWNTs.DWNTs
areless
common
thantheothertwotypes
and
areparticularlyinterestingforresearchdue
totheiruniqueelectronicand
mechanicalproperties,
whichmakethemsuitableforapplicationslikenano-electromechanical
systemsand
high-strengthmaterials.6Carbonnanotube
synthesis
techniques7Chemical
vapor
deposition(CVD):
CVD
isapopularmethodforproducingCNTs,especiallyvaluedforits
precisecontrolovernanotubecharacteristicslikelength,diameter,alignment,and
purity.Thismethod,
typicallyoperatingattemperaturesbelow800
degrees
Celsius(C),
involvesthechemicalbreakdownofhydrocarbonson
asubstrate,often
inthepresenceofmetalliccatalystslikenickel,cobalt,oriron.TypesofCVD
includethermalcatalytic
chemicalvapordeposition,plasma-enhanced
CVD,and
others.
Its
advantagesareits
simplicity,lowtemperature,highpurity,and
suitabilityforlarge-scale,alignedgrowthofCNTs.Laser
ablation:
Inlaserablation,high-poweredlaservaporization(typicallyYAGtype)heats
ablock
ofpuregraphiteinafurnaceataround1,200
degrees
Cinanargonatmosphere.
Metalparticles
areoften
added
as
catalysts.
Thismethodis4:
“Single-Walled
Carbon
Nanotubes:
Structure,
Properties,
Applications,
and
Health
&
Safety,”
OCSiAl,
Marina
Filchakova
and
Vladimir
Saik,
May
12,
2021.5:
“Applications
of
Multi-Walled
Carbon
Nanotubes,”
Nanografi,
Emilia
Coldwell,
May
17,2021.6:
“Double
Walled
Carbon
Nanotubes
(DWCNTs)-
Nanografi
Blog,”
Nanografi,
Arslan
Safder,
June
21,
2019.7:“Carbon
Nanotubes:
Properties,
Synthesis,
Purification,
and
Medical
Applications,”
Nanoscale
Research
Letters,
Ali
Eatemadi,
August
13,
2014.2Emerging
Space
Brief:
Carbon
NanotubesknownforproducingSWNTswithhighpurity
and
quality.The
diameterofthenanotubesdepends
on
thelaserpower.Anotablebenefit
isits
highyieldand
lowmetallicimpurities,but
thismethodisnoteconomicallyadvantageousforlarge-scale
production
and
thenanotubesproducedmaynotbe
uniformlystraight.Carbon
arc
discharge:
Thistechniqueinvolveshightemperatures(above1,700degrees
C)
and
uses
arcdischargebetween
high-puritygraphiteelectrodes
inaheliumenvironment.Itiseffective
forcreatingfewerstructural
defects
inCNTs
andcan
producebothSWNTsand
MWNTs.The
methodboasts
highyieldsofSWNTswithanaveragediameterof1.4
nanometers.
The
mainadvantageisits
potentialforlarge-quantityproduction,
but
itoffers
littlecontrolovernanotubealignmentandrequirespurificationdue
tometalliccatalysts.Purification8The
purificationofcarbon
nanotubes(CNTs)
involvesaseries
ofstepstoremoveimpuritieslikeamorphous
carbon,
metalcatalystparticles,
and
othercarbonaceousmaterials.These
stepsincludeacidtreatment,often
usingconcentratedacidslikenitricor
hydrochloricacid,todissolvemetalparticles.
Filtrationand
centrifugationtechniquesareemployedtoseparateCNTs
fromlargergraphiteparticles
andsolvents.
Additionally,thermaloxidationisused
toeliminateamorphous
carbon,whilesizeexclusionchromatographyand
ultrasonicationaidinseparatinganddispersingnanotubes.
These
methodsvary
incomplexityand
effectiveness,
and
arecrucialforachievingthehighpurity
requiredforspecificapplicationsofCNTs.Thedevelopmentofsingle-step,nondestructive
purificationprocesses
thatmaintaintheproperties
ofCNTs
isacrucialareaforfutureresearch.ApplicationsBiological
and
biomedical
research:CNTshaveshown
promise
in
improvingmechanical
properties
ofbiodegradable
polymeric
nanocomposites
for
tissueengineering
applications
with
materials
such
as
bone,
cartilage,
muscle,
and
nervetissue.
Due
totheir
compatibility
with
biomolecules
likeDNA
and
proteins,
CNTshavebeen
utilized
in
fluorescent
and
photoacoustic
imaging,
localized
heating
for
cancertherapy,
and
biosensors
for
detecting
various
biological
substances.Composite
materials:CNTsare
incorporated
intomaterials
toenhance
theirmechanical
properties,
making
them
applicable
in
items
ranging
from
everyday
goodslikeclothes
and
sports
geartospecialized
applications
such
as
combat
jackets
andspace
elevators.
Their
high
mechanical
strength
and
conductivity
haveled
totheir
usein
manufacturing
wind
turbine
blades,
maritime
security
boats,
and
sports
goods.Microelectronics:
Carbon
nanotube
field-effect
transistors
and
other
electroniccomponents
made
from
CNTshavebeen
developed,
showing
the
potential
tooperateat
room
temperature
and
perform
digital
switching
using
a
single
electron.
They
areconsidered
alternatives
totraditional
materials
in
various
electronic
devices,
offeringimprovements
in
performance
and
size.8:
“Carbon
Nanotubes:
Properties,
Synthesis,
Purification,
and
Medical
Applications,”
Nanoscale
Research
Letters,
Ali
Eatemadi,
August
13,
2014.3Emerging
Space
Brief:
Carbon
NanotubesEnergy
storageand
solar
cells:
CNTs
havebeen
appliedinenergy
storagedeviceslikesupercapacitorsand
batteries,
improvingcapacity
and
cyclability.Insolarcells,CNTs
contributetoincreasedefficiency
throughtheirstrongUV,
visible,and
near-infraredlightabsorptioncharacteristics,and
theyarebeingexploredas
potentialreplacements
forindiumtinoxideinphotovoltaicdevices.Hydrogenstorage:Researchhasfocused
on
usingCNTs
forstoringhydrogengasathighdensitieswithoutcondensingitintoaliquid,providingapotentialsolutionforhydrogen-poweredvehiclesbyallowingstorageinits
gaseous
state,therebyincreasingefficiency.Environmental
remediation:
CNTs
havebeen
used
inwatertreatmentprocessesas
theyexhibitstrongadsorptionaffinities
forvariouscontaminants.Theyarealsobeingexploredforairpurificationas
wellas
fordevelopingcoatingsand
materialsforenvironmentalcleanupapplications.LimitationsCNTs
facesignificantlimitations,particularlyintermsofscalabilityand
costaswellas
environmentaland
healthconcerns.
Scalabilityremainsamajorissue,
asproducinghigh-qualityCNTs
on
alargescale
isexpensive,withthecostofsingle-walledCNTs
rangingfrom$75per
gram
to$300
per
gram.
Thishighcostisa9barriertotheirwidespreaduse,
especiallyinapplicationsrequiringlargequantities.Additionally,ensuringconsistentqualityduringmass
production
ischallenging;issues
likeimpurityand
structural
defects
can
significantlyaffect
theelectrical
andmechanicalproperties
ofCNTs.Environmentaland
healthconcernsalsopose
limitations.The
impact
ofCNTs
onhumanhealthand
theenvironmentisnotyetfullyunderstood,
leadingtohesitationsintheiruse,
particularlyinconsumerproducts.
Potentialtoxicityand
theeffects
oflong-termexposuretoCNTs
requirecarefulconsiderationand
management.
Thesechallengesunderscore
theneed
foradvancements
intheproduction
ofCNTs,aimedatimprovingscalabilityand
cost-effectiveness,whilealsoaddressingsafetyandenvironmentalconcerns.Recentdealactivityandmarket
outlookRecentventurecapitalactivity
intheCNTmarkethighlightsthegrowinginterestinsophisticatedenergy
storagesolutions,whichareessentialforthetransitiontocleanenergy.Omega
Power’ssignificant$18.0
millionSeries
AfundinginJuly2023,
aimedatadvancingtheirCNT-basedlithiumbattery
electrodes,
underscoresthistrend.Additionally,Nano-C’simpressive$50.0
millionfundinginJanuary2023,
cateringtoadiverserangeofapplicationsfromrenewableenergy
tosemiconductors,
reflects
thebroadpotentialofCNTs.However,2022markedanexceptionalyear,largelydue
toOCSiAl’ssubstantial$300.0
millionroundinMarch.Excludingthis,2022experiencedadipindeal
activity,parallelingtrendsinthebroader
venturecapitalmarketof2021.Yet,
2023witnessedaresurgence,indicatingafluctuatingbut
promisingtrajectory
inCNTdeal
activity
overthepast
fiveyears.9:
“Single
Walled
Carbon
Nanotubes,”
Cheap
Tubes,
n.d.,
accessed
January
10,
2024.4Emerging
Space
Brief:
Carbon
NanotubesQuantitative
perspective194552492$2.5BForadeeper
diveintothedataand
toexploreadditionalinsights,
visitthePitchBookPlatformor
request
a
free
trial.companiesdealsinvestorscapitalinvested43deals(TTM)-10.4%
YoY$1.5Mmediandealsize(TTM)$9.8Mmedianpost-moneyvaluation(TTM)-35.9%YoY$180.4Mcapitalinvested(TTM)29.5%YoY-77.7%
YoY*AsofJanuary
9,2024Top
carbonnanotubescompaniesby
totalraised*Totalraised($M)Latest
deal
value($M)CompanyLast
deal
dateDeal
typeHQ
locationYearfoundedOCSiAl$300.0$273.2$169.0$155.8$128.0$115.8$75.6$300.0$84.0N/AMarch
29,2022April
1,
2020Late-stage
VCM&ALeudelange,
Luxembourg
2009SusnShenzhen,
ChinaWoburn,
US2011NanteroCNanoAugust
2,
2021July
15,
2019M&A20012007200120182004$134.8$50.0$100.0$17.7IPOZhenjiang,
ChinaWestwood,
USSanta
Cruz,
USVantaa,
FinlandNano-CPrometheusCanatuJanuary
5,
2023September
23,
2021November
1,
2022Late-stage
VCEarly-stage
VCLate-stage
VCChangxin
ChemicalTechnology$75.3$71.1N/AJanuary
6,
2023IPODezhou,
China200919942004JEIO
Co$97.1$2.2November
18,
2022December
31,
2021IPOIncheon,
South
KoreaMerrimack,
USNanocompTechnologies$54.7GrantSource:
PitchBook
•
Geography:
Global
•
*AsofJanuary
9,20245Emerging
Space
Brief:
Carbon
NanotubesTop
carbonnanotubescompaniesby
ExitPredictoropportunityscore*OpportunityscoreSuccessprobabilityM&AprobabilityTotalraised($M)CompanyIPO
probabilityHQ
locationYearfoundedPicopack95938988878380727176%85%81%79%94%75%73%85%65%56%53%82%80%77%60%74%72%79%62%43%23%3%1%$5.8Daejeon,
South
KoreaAtlanta,
US20162011Carbice$16.5$3.6Aligned
CarbonCensSanta
Clara,
US201820142009201920182018200520152%34%1%$4.9Tel
Aviv,IsraelOCSiAl$300.0$5.0Leudelange,
LuxembourgTallinn,
EstoniaUP
CatalystMattrix
TechnologiesAwexome
RayMeijo
Nano
CarbonNovaSolix1%$8.0$14.3$7.2Gainesville,
US6%3%13%Anyang-si,
South
KoreaNagoya,
Japan68$22.7Newark,
USSource:
PitchBook
•
Geography:
Global
•
*AsofJanuary
9,2024Note:Probabilitydatabased
on
PitchBook
VCExit
Predictor
Methodology.Top
carbonnanotubescompaniesby
numberofactivepatents*CompanyActive
patent
documents
Totalraised
($M)
HQ
locationYearfounded2001Nantero431395$169.0N/AWoburn,
USRolla,
USBrewer
Science1981Hyperion
CatalysisInternational22215412898N/ACambridge,
USWestwood,
USMerrimack,
US198220012004Nano-C$128.0$54.7$5.5NanocompTechnologiesBNNT
MaterialsNewport
News,
US
2010Molecular
RebarDesign96N/AAustin,
US2012Canatu836358$75.6N/AVantaa,
FinlandCalgary,
Canada20041987C2CNTThermoheldN/ABayreuth,
Germany
2002Source:
PitchBook
•
Geography:
Global
•
*Asof
January
9,20246Emerging
Space
Brief:
Carbon
NanotubesTop
carbonnanotubesinvestors*InvestorInvestmentsHQ
locationNational
Science
FoundationUnited
States
Department
of
DefenseUS
Department
of
EnergyUnited
States
Air
Force180
Degree
Capital212012105Alexandria,
USWashington,
USWashington,
USUniversal
City,
USMontclair,
USSan
Francisco,
USWashington,
USBethesda,
USMenlo
Park,
USBoston,
USCRV5National
Aeronautics
and
Space
AdministrationNIH
Seed55Draper
Fisher
Jurvetson
ManagementGlobespan
Capital
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商业银行合同的签订
- 七年级体育与健康 素质考核说课稿
- 2024四年级语文下册 第6单元 20我们家的男子汉说课稿 新人教版
- 2024年五年级数学上册 1 小数乘法第6课时 积的近似数说课稿 新人教版
- 基本初等函数2.1-2.2教学设计
- 中医医生考编试题题库及答案
- 中医考试资格试题及答案
- 2025年4月陕西省榆林市经开区九年级(下)历史中考模拟(一)(含答案)
- 个人购房贷款逾期还款合同模板
- 出租车司机权益保障与运营管理合同
- 2025年合肥公交集团有限公司驾驶员招聘180人笔试参考题库附带答案详解
- 学堂在线 中国传统艺术-篆刻、书法、水墨画体验与欣赏 章节测试答案
- RB/T 306-2017汽车维修服务认证技术要求
- 《数学软件》课程教学大纲
- 《细胞工程学》考试复习题库(带答案)
- 粤教花城版小学音乐歌曲《哈哩噜》课件
- 第六讲:RCEP服务贸易与投资解读课件
- 展筋丹-中医伤科学讲义-方剂加减变化汇总
- 检测检验作业指导书(疾病预防控制中心)
- 咪达唑仑说明书
- 第二章药物转运及转运体
评论
0/150
提交评论