人工智能和区块链_第1页
人工智能和区块链_第2页
人工智能和区块链_第3页
人工智能和区块链_第4页
人工智能和区块链_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

accen>ture

ARTIFICIALINTELLIGENCEANDBLOCKCHAIN

InsightsandActionsfortheChemicalIndustry

CONTENTS

FOREWORD 3

INTRODUCTION 4

DISRUPTIONOFCHEMICALBUSINESSMODELSTHROUGH 7

ARTIFICIALINTELLIGENCEANDBLOCKCHAINTECHNOLOGY

ARTIFICIALINTELLIGENCE 11

ArtificialIntelligenceasDisruptor 12

VisionfortheIndustry 13

RealityCheck:ArtificialIntelligenceintheIndustryToday 14

ValuePotential 17

ChallengesandImplications 18

BLOCKCHAIN 21

BlockchainasDisruptor 22

VisionfortheIndustry 24

RealityCheck:BlockchainintheIndustryToday 26

ValuePotential 27

ChallengesandImplications 29

CONCLUSION 30

APPENDIX 32

ArtificialIntelligence 32

Blockchain 39

ABOUTTHERESEARCH 42

ABOUTTHEAUTHORS 43

PAGE

4

FOREWORD

DearReader,

Newtechnologiesareconstantlyonthehorizon,includingemergingtechnologiessuchasartificialintelligence(AI)andblockchaintechnology.Digitalizationwillbeasourceanddriveroftransformationalchangeacrossallindustries.Thechemical

industrystrivestobeafrontrunnerinmanagingdigitaltransformation.WethereforewelcomeAccenture’sstudyonAIandblockchaintechnologiesandthepotentialimpact

onthechemicalindustry.

Thepurposeofthestudyistosparkideasonhowthechemicalindustrycanreapbenefitsfromapplyingbothtechnologiesintheirbusinessmodels.AIcanboosttheindustrytowardahigherlevelofefficiency.Newdataanalyticsincludingartificialintelligence,machinelearning,anddeeplearningareexpectedtoimpactallbusinessprocessesastheywillefficientlyextractthevaluefromdata.

WhereAIwillreinventthenatureofourwork,blockchainwillimpacthowweinteractacrossthevaluechain.Throughblockchain,chemicalcompaniescanincreasethetransparency

intohowproductsareprocessedineachstepdownthevaluechain—allowingcompaniestotailorproductiontocustomersandprovingtheauthenticityandcircularityoftheirproducts.

Combined,bothtechnologiespresentmajoropportunitiesforourchemicalindustrytocontributetolong-termEuropeanpolicygoals,suchassubstantiallyincreasingresource

orenergyefficiencyandthusreducingcarbonandotherenvironmentalfootprints.

Valuechainsasweknowthemwillchangecompletely:productsandrelatedprocessesbecomemorepersonalized,creatinganddeliveringhighervalueforcustomersthroughtheempowermentoflocal,morespecializedvaluechains.Thechemicalindustrywilldevelopnewdata-basedbusinessmodels.

Simultaneously,productswillincreasinglyincorporatedigitalservicecomponents,enabledbytheabundanceandgrowingflowofdata,tostrengthenthecompetitivenessoftheentireoffer.

Thisstudyprovokesnewreactionstonewtechnologiesbygivingvaluable

recommendationstoourchemicalindustry.Let’sgetreadytocreatea(block)chainreaction.

MarcoMensinkDirectorGeneralCefic

INTRODUCTION

Onthesurface,today’schemicalindustrylookssolid,withpeakcashandstableprofits.Althoughsomesegmentshaveperformedbetterthanothers,ingeneral,timeshavebeengood.

Theindustry’sofferingscontinuetoenablebusinessesaroundtheworldtooptimizetheirperformance,createnewcustomerofferingsanddrivegrowthandprofitability.

Thatsaid,theindustryfaceschallengesonmanyfronts—fromshiftsinfeedstockcoststochangesincustomerneedsandcompetitivethreatsfromnewentrants.Thesechallengesareespeciallysignificantinareassuchasthecustomerinterface,

safeandsustainableoperations,integrating

newtechnologies,buildingtheworkforcetoaddressdemographicchangeandcontendingwithever-increasingregulatoryrequirements.

Chemicalcompanieshavelongreliedonadvancingtechnologytoaddresschallenges,fromtherobotsandmicroprocessorsofthe1960sthroughthesensors,bigdatatoolsandcloudplatformsofthelastdecade.(Figure1)

Today,theindustry’sattentionisturningtotwoemergingtechnologies:artificial

intelligence(AI)andblockchain.Bothhavethepotentialtohelpchemicalcompaniesachievestep-changeimprovementsinperformanceandvalue.(Figure2)Thesetechnologiesarelikelytohaveanimpactonthevaluechainsandprofitpoolswithinthosechains.Buttheycouldalsohavefar-reachingimplicationsforthestructureoftheentireindustryandhow

itoperates.

Figure1:Technologyevolutionfrommechanicaltodigitalinprocessindustries

ProcessIndustry

Electronic

Industrialrobots

Microprocessors

Processcontrolsystems

Enterpriseresourceplanning(ERP)

Controlloopoptimization

Manufacturingexecutionsystems

ERPsystemintegration

MachinelearningandproductionAI

Machine-to-machinecommunication

Autonomousrobots

Manualcontrol

transmissionto50MIA

Singleprocesscontrols

Sensor-basedminicomputing

Advancedprocesscontrols

ERPinterfaces

Smartsensors,RFID,mobile&tracking

Predictivemodelling

Advanced/bigdataanalytics

1930 1940 1950 1960 1970 1980 1990 2000 2010

Manualcontrol

Magnetictapesfordatastorage

Typewriters

Microcomputer/personalcomputers

Floppydiskdatastorage

HTML

Internet

Wifi

Cloud/dataplatforms

Drones

Speechrecognition

Military/government/organizationscomputersystems

OverallIndustry

Materialrequirementsplanning

Mobileinternet/apps

Smartphones

Tablets

Socialnetworks

Smartwatches

3Dprinting

Advancedrobotics

Blockchain

DrawingonanAccenturesurveyof200chemicalindustryexecutivesfromaroundtheglobe,thisreportexplorestherapidlyevolvingapplicationofthesetechnologiesintheindustry.1Itexaminestheeconomicbenefitsthattheyoffer,andtheirbroaderimpactonthewaycompaniesdobusiness.

Thepicturethatemergesisoneofdisruptionandshiftingcompetitiveadvantage—andfundamentalchangethatiscomingsoon.

Industryexecutivesneedtotakestepstounderstandthesetechnologiesand

theirpotentialimpact,anddevelopplansforincorporatingthemintotheirbusinessandtechnologystrategies.Thisreportisdesignedtoprovideinsightsthatcanguidethoseactionsandhelpchemicalcompanies

moveaheadtotakeadvantageofAIandblockchain—andavoidbeingleftbehindinthisnextstageofthedigitalrevolution.

Figure2:KeychallengesinthechemicalindustryandpotentialapplicationsofAIandblockchain

KeyChallenges ArtificialIntelligence Blockchain

Workersafety

Fewerinjuriesinproductionthrough –

earlywarningsystemsandgenerallyfewerworkersonsiteoverall

Demographicchange

Dynamicknowledgedatabases –

toensureknowledgeretentionfromanagingworkforce

Newmarketentrants/competitors

Advancedinsightoncompetitiveactivitiesforeffectiveshieldingstrategies

Networkstructurescreatinganincentivetodobusinesswithinanestablishednetwork

Sustainability/

resourceefficiency

Rawmaterialorenergyanalyticsforefficiencyincreaseinproductionprocesses

Lifecyclemanagementandtraceabilityfromendusebacktorawmaterialorigin

Changingcustomerpreferences

Sensingofmarketdevelopmentsandcustomerdemandpattern

Demandinsightthroughvaluechaintransparency,enablingmoreeffectiveproductandservicedevelopment

Regulatorycompliance

Intelligentdocumentstructuring,build-upofknowledgedatabasesandsystematicdocumentanalysis

Fraudresistant,tamper-evidenttransactionsthroughnetworkvalidations(e.g.,instantdataqualityforREACH,productcertificates,regulatoryreporting)

Newofferingstoenhancegrowth

Patternrecognitioninvastamounts

ofdata(e.g.,touncovernewformulationsorapplicationsforexistingproducts)

Platformforproductco-creationfromdifferentplayersacrossthevaluechain

Tracking

valueflows

– Transparencyonmaterialtransfers,financeflowandinventorylevelsacrosssupplychain(e.g.,improvedplanningandexecution,nearreal-timetrackingofdeliverystatus)

Errorsinroutinetasks

Augmentationofhumandecisionmaking(e.g.,toincreasefirst-timerightinproduction)

Eliminationofmiddlemen,

systembreaksandhumaninterventioninrepetitive/transactionaltasks

Manualeffort

Automationinproduction,R&Dandadministration(e.g.,chatbotsincustomercarecenters)

Automationandeliminationoftransactionsthroughnearreal-timevalidations(e.g.,verificationsofinvoices,shipments,taxes)

6

PAGE

8

DISRUPTIONOFCHEMICALBUSINESSMODELSTHROUGHARTIFICIALINTELLIGENCEANDBLOCKCHAINTECHNOLOGY

Chemicalcompanies’businessmodelsareconstructedaroundacommonsetofapproximately40buildingblocks.

Thesesupportseveralorganizationaldimensions,whichtypicallyincludeproductandserviceofferings,customerinteractions,themanagementofassetsandthesupplychainandorganizationalenablers.(Figure3)

Figure3:AIandblockchainhavethepotentialtodisruptbusinessmodelssubstantially

Dimension

Buildingblocks

Configurationoptions

OFFERING

Customerneedaddressed

Competitiveprice

Securedsupply

Highquality

Choiceofconfigurations

Takeoverofvaluecreation

Product/processinnovation

Productoffering

Catalogproduct

Productwithconfigurationoptions

Productformulation

Serviceoffering

None

Logisticsservices

Technicalservices

Co-development

Registration/ESHQservice

CUSTOMERINTERACTION

Pricing

Market-driven/indexpricing

Cost-plus

Value-based

Sales

Fullyautomatedinsidesales

E-commerce

Bypasseddistributors

Nosalesrepsinfield

Highlyautomatedkeyaccountmgmt

Technicalservice

None

Remotelyassistedandaugmentedfieldsupport

Solutionco-development

Labservice

R&D,ASSETSANDSUPPLYCHAINMANAGEMENT

Researchanddevelopment

None

Simulationofmoleculemodification/synthesis

Highlyautomatedlabs

Chemicalprocessoptimization/engineering

Production

Continuous

Campaign

Batch

Discrete

Orderfulfillment

Make-to-stock

Make-to-forecast

Make-to-order

Make-to-project

Logistics&inventory

Directtocustomer

Singleechelon

(Single-tierwarehouse)

Multi-echelon

(Multi-tierwarehouse)

Maintenance

Predictivemaintenance

Condition-orientedmaintenance

Period-basedmaintenance

Run-to-failuremaintenance

ENABLERS

Procurement

Spotpurchase

Contractagreements

Finance

Nodifferentiatingcharacteristics

HR

Nodifferentiatingcharacteristics

AccenturebelievesthateachofthebuildingblockswillexperiencedisruptionfromwidespreadadoptionofAIand/orblockchaintechnology.Adoptionofthesetechnologieswillfundamentallyalterhowchemicalcompaniesperformworkandinteractwithcustomers.(Figure4)Inthenearfuture,businessmodelswillfocusontechnology-basedofferings,

AI-enabledcustomerinteractions,data-drivenmanagementofassetsandthesupplychain,andback-officeprocessesthatareautomatedasmuchaspossible.

Forexample,today’scost-plusortarget-pricecostcalculationswillbereplacedbycontextualpricingbased

onforesightandmarketsimulationsdrivenbyAI.Primarycustomerinteractionswillbebasedonvirtualsupport,reducingtheneedforcustomerservicecentersandenablingcompaniestooffercustomershighlyrelevantproductsandservices—andtodosomore

frequently.Chemicalcompanieswillbebetterabletopredictprocessresultsbasedonmoredetailedspecificationsofinputmaterials,

ortobringtheirresearchanddevelopment(R&D)tonewlevelsthroughAI-basedresultexplorations.Logisticswillberevolutionizedthroughtamper-evident,nearreal-timetrackingandfreightsettlementfunctionalities.AndpredictivemaintenancewillreachnewheightsthroughtheprocessingoflargevolumesofdataandAI-basedsimulations.

Withthesetechnologies,commodityandspecialtychemicalcompaniesalikewillexperiencedisruptivechangeintheirbusinessmodels.Theywillhaveunprecedentedvisibilityintotheendusesoftheirproductsandwillbeabletooperateplantswithdrasticallyreducedlevelsoflost-timeincidents.Theywillalsobeabletooffer24/7serviceatzeroincrementalcostandtoextractinsightandvaluefromthemassiveamountsofdatabeinggeneratedcontinuously.Atthesametime,humanemployeeswillbeabletofocusonmorecreativetasksthroughouttheorganization—allowingformoreinnovationanddrivingadditionalgrowth.

Figure4:KeydisruptionsforchemicalbusinessmodelelementsthroughAIandblockchain

Reductioninchurnratethroughmorescalablecustomerinteraction,morefrequentinteraction,greaterresponsiveness

Learning-basedofferingdesign:moretailored,differentiatedoffers,automatedofferingtestingandcampaigning

Greaterinsightintocustomerneedsthroughblockchain-drivenapplicationtransparency

Greaterscalabilityofservices

Morehighlycustomizedserviceofferingsforeachcustomer

Vendor-managedinventories,logistics,recyclinganddisposal

Performance-basedoptimizationofcircularservices/businessmodels—e.g.,chemicalleasing

OFFERING

Customer

needaddressed

Productoffering

Serviceoffering

AI-poweredanalysisofwillingnesstopay,priceelasticity,switchingthresholds,etc.

Reducedpriceleakage

Improvedpricesynchronizationvs.rawmaterialcostandvs.playersoutsidenetwork

AI-basedcustomer-specificdemandsensing

Automatedcustomerinquiries(virtualassistants)

Automatedtransactionaltasksandsimpleinteractions

Deeperinsightthroughminingofoverallecosystem

Wearabledevicesforfieldsupportwithimagerecognition

Improvedunderstandingofendcustomerneeds

CUSTOMER

INTERACTION

Pricing

Sales

Technicalservice

Dimension CharacteristicsExpectedimpact

R&D,ASSETSANDSUPPLYCHAINMANAGEMENT

R&D

Production

Order

fulfillment

Logistics&inventory

Maintenance

Dimension CharacteristicsExpectedimpact

Data-drivenR&D,e.g.,cross-BUexperimentation,leverageofhistoricdata,newapplicationsforexistingproducts,directcustomerinsights

Insilicoexperimentation

Advancedlabautomation

ImprovedyieldandthroughputthroughAI-basedoptimizationofproduction

Reducedoff-spec,changeovers,slow-downsanddowntimewithAI-baseddemandplanningandproductionscheduling

Reducedmanualmaterialhandlingthroughintelligentautomation

Reducedenergyconsumptionthroughmachinelearning-basedoptimization,improvedspotvs.contractingmixforenergysourcing

Reducedeffortfordecisionmaking—e.g.,AI-assistedcontrolroomoperations

Automationofadministrativetasks

Machinelearning-poweredpredictivemodelsmakingmake-to-stockobsolete

Improveddemandvisibilityandsupplycapability

Track&trace,automatedqualitycontrol,assuredprovenance

Reducedtransactioncost(logistics,customs,quality,certificatehandling,moreautomation,lesspaper)

Improvednetworkandinventoryoptimization

Pre-consolidationsoftransports

Reducedwarehousingdemand

Optimizedloading/unloadingslotmanagement

Near-realtimerouteoptimization

Connectedplantsand3-Dmodeling(digitaltwin)

Real-time,remotemonitoringofequipmentperformanceandcondition

Causalanalyticsandadvanceddatavisualization

Higherassetavailabilityduetoreducedunplanneddowntime

Maximizedhands-on-tooltimethroughAI-poweredworkplanningandscheduling

Reducedspare-partinventoryandimprovedsparepartavailability

Reducedunplannedeffort,improvedpredictionofhighprioritynotifications

LowerrawmaterialpricesthroughhigherforecastaccuracyandAI-poweredmarketintelligenceandimprovedhedgingofrawmaterialprices

Optimizedthird-partyspendthroughbetterschedulingandoptimizedprocurement

Reducedinvoiceverificationthroughautomatedsettlement

Reducedforeignexchangeriskifchemicaltokenimplemented

Reducedemployeedatamaintenance

Individualized,adaptivelearningtools

ENABLER

Procurement

Finance

HR

Asaresultofallthetechnologicaldisruption,thetypicalsequenceofactivitiesfromsensingcustomerdemandtofulfillinganorderwillsoonlookverydifferentfromtoday.(Figure5)

Thedisruptivepotentialassociatedwiththesetechnologiesishuge,andchemicalcompaniesneedtorethinknowhowtheirorganizationswilloperateinthenearfuture.

Figure5:Disruptivechangeincustomerdemand-to-fulfillmentcycle

AI-basednextbestaction

forhumancustomerinteraction

Blockchain-baseddemanddetection

Automated,blockchain-based

settlement

Campaign/offeringdesigned

bymarketingteam

FULFILMENT CUSTOMER

LogisticalplansassistedbyAI,

materialhandlingbyrobots

Virtualassistant-executed

positioningtocustomers

AI-basedsynthesisand

productioninautonomousplant

DIGITALPLANT

VIRTUALASSISTANT

Contextualquotedeterminedby

AI-poweredpricingengine

Virtualassistant-basedcustomerservice

Virtualassistant-basedordertaking,

blockchain-basedcontracting

10

PAGE

13

ARTIFICIALINTELLIGENCE

Today,AIisalreadyapartofdailylife.Forexample,itisnotatallunusualfor

someonetotakeUbertotheairport,usingthetimeinthecartocatchuponpresortede-mailanddosomeonlineshopping—arrivingafteraproductiveandseamlessexperience.

Inthenot-too-distantpast,thatexperiencewouldnothavebeenpossible.Today,itis,becauseitislargelybasedonAItechnologies.AIhelpsthepersonandtheUberdrivertoconnect,navigatearoundtrafficjamsandfindthebestroute.Itprioritizese-mailandscreensoutfraudulentmessages,providesshoppingrecommendations,andevenoffersaselectionofmusictailoredtotherider’stastes.And

AI-enabledautonomousvehiclesareonthevergeofbeingapprovedforwidespreaduseonpublicroads—whichmeansthat

thecarsoonmayhavenodriver.

AIisagroupoftechnologiesthatincludesmachinelearning,computervisionandspeechrecognition,anditisatthecoreoftoolssuchaspredictiveanalytics,advancedprocessautomation,roboticsandmechanicalautomation,amongmanyothers.AIhasquicklybecomerelevantinprivatelifeandbusiness-to-consumer(B2C)contexts,anditwillsoonhaveatremendousimpactonthechemicalindustry.

AIhasthepotentialtodisruptbusinessoperationsbyhelpingcompaniesto:

Makemoreinformeddecisions.

Makebetteruseofexistingdata.

Developnewinsightsfromlargeamountsofdatathatwouldoverwhelmhumans.

Acceleratelearning.

Automaterepetitive,transactionalandjudgment-relatedtasks.

Reducehumaninvolvementinphysicaltasks.

Createnewservicesandofferings.

Tworecentexamplesshowjusthowfar

onetypeofAI—naturallanguagerecognitionandgeneration—haveevolved.Inrecentyears,auniversityusedIBMtechnologytocreate

“JillWatson,”anAI-basedteachingassistantthatrepliedtostudents’e-mails,2andtheGoogleDuplexAIsystem,whichsuccessfullyreservedarestauranttablebyphone.3Inbothcases,thepeopleonthereceivingendwereunabletodetectthattheywereconversingwitharobot.

Inabusinesscontext,AIisusedtohandleroutine,rules-basedandincreasinglycomplextasks,suchascapitalmarketinvestmentmanagement,eveniftherearemultipleandvaryingfactorsandsentimentstoconsider.

AIdoesthissowellthat56percentofhedgefundsbasetheirinvestmentdecisionsonAIandmachinelearning,andmorethanaquarteruseAItoexecutetransactionsautonomously.4

Ingeneral,today’sAIseeminglymimicsthehumanbraintocarryoutsimpletasksandmaketraditionaldigitizationandautomationmoresophisticated,whichinturnenablesthehumanworkforcetobemoreeffectiveandefficient—aswellasmorecreative.

Forexample,bycapturingandusingexistingknowledgeinautomatedalgorithmsandcreatingnewinsightsthroughmachinelearning,AIaugmentsthehumanworkforce.Asaconsequence,AIwillplayanimportantroleinhelpingtosustainandaccelerateproductivityandgrowthinareaswherethereisadecliningworkingpopulation,suchastheEuropeanUnion.5

ARTIFICIALINTELLIGENCEASDISRUPTOR

AIhasthepotentialtodisrupteveryaspectoftoday’schemicalindustrybusinessmodel(customerinteraction,operations,administration,etc.)andtoopenthedoortonewproductsandserviceofferings.Forexample,itcouldenablechemicalcompaniesto:

Conducthighlytargeted,proactivesaleswithAI-basedcustomer-specificforecastinganddemandsensing—whichcouldmakeitpossibletoship

goodsbeforethecustomerplacesanorder.

Reducepriceleakagethroughsuperiorproductqualityandfasterinnovationcycles,usingdata-drivenR&D.

Developamuchdeeperunderstandingofcustomersandbetteridentifynewapplications/marketsforexistingandnewproducts.

Increaseproductionthroughputbyensuringfirst-time-rightproduction,andtargetingreactionyield,optimized

change-oversandadvancedmaintenancethatreducesunplanneddowntime.

Reducecustomerchurnratesthrough24/7customerservice,withhigherlevelsofdata-drivenservicequality.

Useon-sitenaturallanguage-enabledvirtualtechnicalsalesagentsthatarealwaysavailabletoconsultwithcustomersincaseofproblems/inquiries,andtoinformthemaboutnewofferings.

Byenablingnewlevelsofefficiency

andeffectivenessinallbusinessfunctions,AIwillhaveasignificantimpactonindividualjobprofilesandtheworkforceoverall.

ManytransactionalandsimpletaskswillbeperformedbyAI,therebyenablingpeople

tofocusonmorevalue-addedworkinvolvingcomplexjudgmentandcreativity.Accenturehasassessedtasksin30typicaljobfamiliesinthechemicalindustryandfoundthatnotonlyoperationaltasks(suchasproduction

orsales)willbedisrupted,butalsoadministrative,managerialandscientifictasks.Allinall,AIisexpectedtoreducehumaneffortacrossthesejobfamiliesbyupto45percent.Intheshort-andmedium-term,however,itwillcreatealargedemandforhumanworkerswhowilldevelop,monitorandmanageAI-basedoperations.6

VISIONFORTHEINDUSTRY

LookingatAI’spowerfulandevolvingcapabilities,it’spossibletoimagineafutureinwhichthechemicalcompanyneversleeps—whereautonomousplantsrun24/7withmaximizedefficiency,yieldingproductsinspecwithoutwasteandwithminimaldowntime.It’safuturewhere:

Tedious,routinemanualworkisobsolete,andsafetyandqualityareatunprecedentedhighlevels.

Centralizedteamsofdatascientists,chemicalprocessengineersandproductionmanagerssuperviseautonomousplantsandusereal-timedigitaltwinsimulation

tooptimizeoperationsconstantly.

Dedicatedinterventionteamsofoperators,pooledforlargerplantclusters,are

onstandbytohandleproblemsandunexpectedevents.

AIaugmentssupervisionactivitiessuchasinspectionrounds,helpingtoincreaseoverallplantlifetime.

ProductiondataisfullyavailableforR&Dandcustomerservice.

Inthisworld,R&DwilldrawonatremendousamountofknowledgeandAI-poweredrobotswillconductexperimentswithsuchprecisionthatagivenexperimentwillneverhave

tobeperformedtwice.WithanAIsystemcontinuouslycrawlingthedataecosystem,newapplicationsandpotentialfieldsofinterestwillbeidentifiedquickly,andtheirchancesofsuccesswillbepre-assessedonthespot.Backedbyfullyautomatedchemicallabs,furtherexperimentationwillbetriggeredwithouthumaninteraction,resultswillbeautomaticallyassessedbasedonhistoricinternalandexternaldata,andworkerswillbegivencompletedossiersonpotentialactionstodecidewhethertoengagefurther.Virtuallynotimewillbespentonguessingvaluepotentials,diggingintopreviouslyconductedexperimentstoassesstechnicalfeasibility,

orsearchingtheinternetforsupporting

information—whichaltogetherwillenableleapsinefficiencyandeffectivenessthatwillspeedupproductinnovationcycles.

Meanwhile,customerservicewillusevirtualagentstoincreaseefficiencyandservethecustomer24/7,onlineorbyphone.Accessingallinternalapplication,productionandshippingdata,aswellascustomerinformation,frontlineAIsystemswillworkwithacompletesetofdatathatmakesitpossibleforthetechnologytohandlemostinquiriesonitsown.Onlythemore-complexquestionswillbepassedtospecializedAIsystemsorhumanexperts.

Forexample,withapplication-relatedquestions,theAIlabsystemwillconductsimulationsbasedonhistoricand/orextrapolatedR&D,applicationandcustomerdata,andthenwillconductpreliminarytrialsovernightinafullyautomatedlab.Thenextmorning,thehumanapplicationexpertwillhaveanexperimentallyverifiedrecommendationtoreviewandforwardtothecustomer.

InthisAI-enabledfuture,chemicalcompanieswillproactivelygivecustomerstailoredoffersbasedonmarketinformation,R&Doutput,currentproductportfolioandtheirownprocessdata.Andwiththegreaterefficiencyinvolvedsuchcustomizedofferscanbeextendedtoaverybroadrangeofcustomers,includinglower-priorityaccounts.Inaddition,AI-baseddemandsensingwillletchemicalcompaniesknowexactlywhenanewshipmentisrequired,meaningthatcustomerswillneverrunoutofproduct.AIwillsimplifythecustomerorderingprocessandoptimizewarehousing,increasingcustomerretentionandsimplifyingproductionplanning.

Altogether,suchproactive,individualizedinteractionswillmakeitpossibletodevelopdeeperwin-winrelationshipswithcustomers.

Overall,thisvisionpaintsapictureinwhichtomorrow’sleadingchemicalcompanieswilldrawonAItocreateanefficientandinnovativeenterprisewherehumanintelligenceissupportedbyanAI-enableddigitalworkforce.

REALITYCHECK:ARTIFICIALINTELLIGENCEINTHEINDUSTRYTODAY

Thechemicalindustryisalreadyhighlydata-driven,withitscorebusinessgeneratinglargeamountsofdata.(Figure6)

Forexample,atypicalplanthas5,000to10,000piecesofstaticandrotatingequipment,eachsendingconditiondatasuchaspressure,

temperature,flowrateandspeedofrotationeveryfewseconds—generatingasmuchas50–500terabytesofinformationperyear.Inadditiontoassetdata,chemicalcompaniesneedtomanageproductdata:Here,eachbusinesshashundreds(ifnotthousands)ofstock-keepingunits,includingproductvariants,gradesandpackaging.

InR&D,researcherstypicallyaddtodatavolumesthroughmultipletestseriesandmeasurementsthatyieldinsightsintothecomplexstructure-propertyrelationshipsofchemicalsubstancesortheperformanceofchemicalformulationsinhighlyspecificapplications.Inaddition,companiesalsogeneratealargevolumeofstructuredand

unstructuredtransactionaldataincustomerandsupplierinteractions—informationsuchasordersizes,prices,shippingaddresses,rawmaterialclassification,visitreports,

e-mails,applicationd

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论