版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
accen>ture
ARTIFICIALINTELLIGENCEANDBLOCKCHAIN
InsightsandActionsfortheChemicalIndustry
CONTENTS
FOREWORD 3
INTRODUCTION 4
DISRUPTIONOFCHEMICALBUSINESSMODELSTHROUGH 7
ARTIFICIALINTELLIGENCEANDBLOCKCHAINTECHNOLOGY
ARTIFICIALINTELLIGENCE 11
ArtificialIntelligenceasDisruptor 12
VisionfortheIndustry 13
RealityCheck:ArtificialIntelligenceintheIndustryToday 14
ValuePotential 17
ChallengesandImplications 18
BLOCKCHAIN 21
BlockchainasDisruptor 22
VisionfortheIndustry 24
RealityCheck:BlockchainintheIndustryToday 26
ValuePotential 27
ChallengesandImplications 29
CONCLUSION 30
APPENDIX 32
ArtificialIntelligence 32
Blockchain 39
ABOUTTHERESEARCH 42
ABOUTTHEAUTHORS 43
PAGE
4
FOREWORD
DearReader,
Newtechnologiesareconstantlyonthehorizon,includingemergingtechnologiessuchasartificialintelligence(AI)andblockchaintechnology.Digitalizationwillbeasourceanddriveroftransformationalchangeacrossallindustries.Thechemical
industrystrivestobeafrontrunnerinmanagingdigitaltransformation.WethereforewelcomeAccenture’sstudyonAIandblockchaintechnologiesandthepotentialimpact
onthechemicalindustry.
Thepurposeofthestudyistosparkideasonhowthechemicalindustrycanreapbenefitsfromapplyingbothtechnologiesintheirbusinessmodels.AIcanboosttheindustrytowardahigherlevelofefficiency.Newdataanalyticsincludingartificialintelligence,machinelearning,anddeeplearningareexpectedtoimpactallbusinessprocessesastheywillefficientlyextractthevaluefromdata.
WhereAIwillreinventthenatureofourwork,blockchainwillimpacthowweinteractacrossthevaluechain.Throughblockchain,chemicalcompaniescanincreasethetransparency
intohowproductsareprocessedineachstepdownthevaluechain—allowingcompaniestotailorproductiontocustomersandprovingtheauthenticityandcircularityoftheirproducts.
Combined,bothtechnologiespresentmajoropportunitiesforourchemicalindustrytocontributetolong-termEuropeanpolicygoals,suchassubstantiallyincreasingresource
orenergyefficiencyandthusreducingcarbonandotherenvironmentalfootprints.
Valuechainsasweknowthemwillchangecompletely:productsandrelatedprocessesbecomemorepersonalized,creatinganddeliveringhighervalueforcustomersthroughtheempowermentoflocal,morespecializedvaluechains.Thechemicalindustrywilldevelopnewdata-basedbusinessmodels.
Simultaneously,productswillincreasinglyincorporatedigitalservicecomponents,enabledbytheabundanceandgrowingflowofdata,tostrengthenthecompetitivenessoftheentireoffer.
Thisstudyprovokesnewreactionstonewtechnologiesbygivingvaluable
recommendationstoourchemicalindustry.Let’sgetreadytocreatea(block)chainreaction.
MarcoMensinkDirectorGeneralCefic
INTRODUCTION
Onthesurface,today’schemicalindustrylookssolid,withpeakcashandstableprofits.Althoughsomesegmentshaveperformedbetterthanothers,ingeneral,timeshavebeengood.
Theindustry’sofferingscontinuetoenablebusinessesaroundtheworldtooptimizetheirperformance,createnewcustomerofferingsanddrivegrowthandprofitability.
Thatsaid,theindustryfaceschallengesonmanyfronts—fromshiftsinfeedstockcoststochangesincustomerneedsandcompetitivethreatsfromnewentrants.Thesechallengesareespeciallysignificantinareassuchasthecustomerinterface,
safeandsustainableoperations,integrating
newtechnologies,buildingtheworkforcetoaddressdemographicchangeandcontendingwithever-increasingregulatoryrequirements.
Chemicalcompanieshavelongreliedonadvancingtechnologytoaddresschallenges,fromtherobotsandmicroprocessorsofthe1960sthroughthesensors,bigdatatoolsandcloudplatformsofthelastdecade.(Figure1)
Today,theindustry’sattentionisturningtotwoemergingtechnologies:artificial
intelligence(AI)andblockchain.Bothhavethepotentialtohelpchemicalcompaniesachievestep-changeimprovementsinperformanceandvalue.(Figure2)Thesetechnologiesarelikelytohaveanimpactonthevaluechainsandprofitpoolswithinthosechains.Buttheycouldalsohavefar-reachingimplicationsforthestructureoftheentireindustryandhow
itoperates.
Figure1:Technologyevolutionfrommechanicaltodigitalinprocessindustries
ProcessIndustry
Electronic
Industrialrobots
Microprocessors
Processcontrolsystems
Enterpriseresourceplanning(ERP)
Controlloopoptimization
Manufacturingexecutionsystems
ERPsystemintegration
MachinelearningandproductionAI
Machine-to-machinecommunication
Autonomousrobots
Manualcontrol
transmissionto50MIA
Singleprocesscontrols
Sensor-basedminicomputing
Advancedprocesscontrols
ERPinterfaces
Smartsensors,RFID,mobile&tracking
Predictivemodelling
Advanced/bigdataanalytics
1930 1940 1950 1960 1970 1980 1990 2000 2010
Manualcontrol
Magnetictapesfordatastorage
Typewriters
Microcomputer/personalcomputers
Floppydiskdatastorage
HTML
Internet
Wifi
Cloud/dataplatforms
Drones
Speechrecognition
Military/government/organizationscomputersystems
OverallIndustry
Materialrequirementsplanning
Mobileinternet/apps
Smartphones
Tablets
Socialnetworks
Smartwatches
3Dprinting
Advancedrobotics
Blockchain
DrawingonanAccenturesurveyof200chemicalindustryexecutivesfromaroundtheglobe,thisreportexplorestherapidlyevolvingapplicationofthesetechnologiesintheindustry.1Itexaminestheeconomicbenefitsthattheyoffer,andtheirbroaderimpactonthewaycompaniesdobusiness.
Thepicturethatemergesisoneofdisruptionandshiftingcompetitiveadvantage—andfundamentalchangethatiscomingsoon.
Industryexecutivesneedtotakestepstounderstandthesetechnologiesand
theirpotentialimpact,anddevelopplansforincorporatingthemintotheirbusinessandtechnologystrategies.Thisreportisdesignedtoprovideinsightsthatcanguidethoseactionsandhelpchemicalcompanies
moveaheadtotakeadvantageofAIandblockchain—andavoidbeingleftbehindinthisnextstageofthedigitalrevolution.
Figure2:KeychallengesinthechemicalindustryandpotentialapplicationsofAIandblockchain
KeyChallenges ArtificialIntelligence Blockchain
Workersafety
Fewerinjuriesinproductionthrough –
earlywarningsystemsandgenerallyfewerworkersonsiteoverall
Demographicchange
Dynamicknowledgedatabases –
toensureknowledgeretentionfromanagingworkforce
Newmarketentrants/competitors
Advancedinsightoncompetitiveactivitiesforeffectiveshieldingstrategies
Networkstructurescreatinganincentivetodobusinesswithinanestablishednetwork
Sustainability/
resourceefficiency
Rawmaterialorenergyanalyticsforefficiencyincreaseinproductionprocesses
Lifecyclemanagementandtraceabilityfromendusebacktorawmaterialorigin
Changingcustomerpreferences
Sensingofmarketdevelopmentsandcustomerdemandpattern
Demandinsightthroughvaluechaintransparency,enablingmoreeffectiveproductandservicedevelopment
Regulatorycompliance
Intelligentdocumentstructuring,build-upofknowledgedatabasesandsystematicdocumentanalysis
Fraudresistant,tamper-evidenttransactionsthroughnetworkvalidations(e.g.,instantdataqualityforREACH,productcertificates,regulatoryreporting)
Newofferingstoenhancegrowth
Patternrecognitioninvastamounts
ofdata(e.g.,touncovernewformulationsorapplicationsforexistingproducts)
Platformforproductco-creationfromdifferentplayersacrossthevaluechain
Tracking
valueflows
– Transparencyonmaterialtransfers,financeflowandinventorylevelsacrosssupplychain(e.g.,improvedplanningandexecution,nearreal-timetrackingofdeliverystatus)
Errorsinroutinetasks
Augmentationofhumandecisionmaking(e.g.,toincreasefirst-timerightinproduction)
Eliminationofmiddlemen,
systembreaksandhumaninterventioninrepetitive/transactionaltasks
Manualeffort
Automationinproduction,R&Dandadministration(e.g.,chatbotsincustomercarecenters)
Automationandeliminationoftransactionsthroughnearreal-timevalidations(e.g.,verificationsofinvoices,shipments,taxes)
6
PAGE
8
DISRUPTIONOFCHEMICALBUSINESSMODELSTHROUGHARTIFICIALINTELLIGENCEANDBLOCKCHAINTECHNOLOGY
Chemicalcompanies’businessmodelsareconstructedaroundacommonsetofapproximately40buildingblocks.
Thesesupportseveralorganizationaldimensions,whichtypicallyincludeproductandserviceofferings,customerinteractions,themanagementofassetsandthesupplychainandorganizationalenablers.(Figure3)
Figure3:AIandblockchainhavethepotentialtodisruptbusinessmodelssubstantially
Dimension
Buildingblocks
Configurationoptions
OFFERING
Customerneedaddressed
Competitiveprice
Securedsupply
Highquality
Choiceofconfigurations
Takeoverofvaluecreation
Product/processinnovation
Productoffering
Catalogproduct
Productwithconfigurationoptions
Productformulation
Serviceoffering
None
Logisticsservices
Technicalservices
Co-development
Registration/ESHQservice
CUSTOMERINTERACTION
Pricing
Market-driven/indexpricing
Cost-plus
Value-based
Sales
Fullyautomatedinsidesales
E-commerce
Bypasseddistributors
Nosalesrepsinfield
Highlyautomatedkeyaccountmgmt
Technicalservice
None
Remotelyassistedandaugmentedfieldsupport
Solutionco-development
Labservice
R&D,ASSETSANDSUPPLYCHAINMANAGEMENT
Researchanddevelopment
None
Simulationofmoleculemodification/synthesis
Highlyautomatedlabs
Chemicalprocessoptimization/engineering
Production
Continuous
Campaign
Batch
Discrete
Orderfulfillment
Make-to-stock
Make-to-forecast
Make-to-order
Make-to-project
Logistics&inventory
Directtocustomer
Singleechelon
(Single-tierwarehouse)
Multi-echelon
(Multi-tierwarehouse)
…
Maintenance
Predictivemaintenance
Condition-orientedmaintenance
Period-basedmaintenance
Run-to-failuremaintenance
ENABLERS
Procurement
Spotpurchase
Contractagreements
Finance
Nodifferentiatingcharacteristics
HR
Nodifferentiatingcharacteristics
AccenturebelievesthateachofthebuildingblockswillexperiencedisruptionfromwidespreadadoptionofAIand/orblockchaintechnology.Adoptionofthesetechnologieswillfundamentallyalterhowchemicalcompaniesperformworkandinteractwithcustomers.(Figure4)Inthenearfuture,businessmodelswillfocusontechnology-basedofferings,
AI-enabledcustomerinteractions,data-drivenmanagementofassetsandthesupplychain,andback-officeprocessesthatareautomatedasmuchaspossible.
Forexample,today’scost-plusortarget-pricecostcalculationswillbereplacedbycontextualpricingbased
onforesightandmarketsimulationsdrivenbyAI.Primarycustomerinteractionswillbebasedonvirtualsupport,reducingtheneedforcustomerservicecentersandenablingcompaniestooffercustomershighlyrelevantproductsandservices—andtodosomore
frequently.Chemicalcompanieswillbebetterabletopredictprocessresultsbasedonmoredetailedspecificationsofinputmaterials,
ortobringtheirresearchanddevelopment(R&D)tonewlevelsthroughAI-basedresultexplorations.Logisticswillberevolutionizedthroughtamper-evident,nearreal-timetrackingandfreightsettlementfunctionalities.AndpredictivemaintenancewillreachnewheightsthroughtheprocessingoflargevolumesofdataandAI-basedsimulations.
Withthesetechnologies,commodityandspecialtychemicalcompaniesalikewillexperiencedisruptivechangeintheirbusinessmodels.Theywillhaveunprecedentedvisibilityintotheendusesoftheirproductsandwillbeabletooperateplantswithdrasticallyreducedlevelsoflost-timeincidents.Theywillalsobeabletooffer24/7serviceatzeroincrementalcostandtoextractinsightandvaluefromthemassiveamountsofdatabeinggeneratedcontinuously.Atthesametime,humanemployeeswillbeabletofocusonmorecreativetasksthroughouttheorganization—allowingformoreinnovationanddrivingadditionalgrowth.
Figure4:KeydisruptionsforchemicalbusinessmodelelementsthroughAIandblockchain
Reductioninchurnratethroughmorescalablecustomerinteraction,morefrequentinteraction,greaterresponsiveness
Learning-basedofferingdesign:moretailored,differentiatedoffers,automatedofferingtestingandcampaigning
Greaterinsightintocustomerneedsthroughblockchain-drivenapplicationtransparency
Greaterscalabilityofservices
Morehighlycustomizedserviceofferingsforeachcustomer
Vendor-managedinventories,logistics,recyclinganddisposal
Performance-basedoptimizationofcircularservices/businessmodels—e.g.,chemicalleasing
OFFERING
Customer
needaddressed
Productoffering
Serviceoffering
AI-poweredanalysisofwillingnesstopay,priceelasticity,switchingthresholds,etc.
Reducedpriceleakage
Improvedpricesynchronizationvs.rawmaterialcostandvs.playersoutsidenetwork
AI-basedcustomer-specificdemandsensing
Automatedcustomerinquiries(virtualassistants)
Automatedtransactionaltasksandsimpleinteractions
Deeperinsightthroughminingofoverallecosystem
Wearabledevicesforfieldsupportwithimagerecognition
Improvedunderstandingofendcustomerneeds
CUSTOMER
INTERACTION
Pricing
Sales
Technicalservice
Dimension CharacteristicsExpectedimpact
R&D,ASSETSANDSUPPLYCHAINMANAGEMENT
R&D
Production
Order
fulfillment
Logistics&inventory
Maintenance
Dimension CharacteristicsExpectedimpact
Data-drivenR&D,e.g.,cross-BUexperimentation,leverageofhistoricdata,newapplicationsforexistingproducts,directcustomerinsights
Insilicoexperimentation
Advancedlabautomation
ImprovedyieldandthroughputthroughAI-basedoptimizationofproduction
Reducedoff-spec,changeovers,slow-downsanddowntimewithAI-baseddemandplanningandproductionscheduling
Reducedmanualmaterialhandlingthroughintelligentautomation
Reducedenergyconsumptionthroughmachinelearning-basedoptimization,improvedspotvs.contractingmixforenergysourcing
Reducedeffortfordecisionmaking—e.g.,AI-assistedcontrolroomoperations
Automationofadministrativetasks
Machinelearning-poweredpredictivemodelsmakingmake-to-stockobsolete
Improveddemandvisibilityandsupplycapability
Track&trace,automatedqualitycontrol,assuredprovenance
Reducedtransactioncost(logistics,customs,quality,certificatehandling,moreautomation,lesspaper)
Improvednetworkandinventoryoptimization
Pre-consolidationsoftransports
Reducedwarehousingdemand
Optimizedloading/unloadingslotmanagement
Near-realtimerouteoptimization
Connectedplantsand3-Dmodeling(digitaltwin)
Real-time,remotemonitoringofequipmentperformanceandcondition
Causalanalyticsandadvanceddatavisualization
Higherassetavailabilityduetoreducedunplanneddowntime
Maximizedhands-on-tooltimethroughAI-poweredworkplanningandscheduling
Reducedspare-partinventoryandimprovedsparepartavailability
Reducedunplannedeffort,improvedpredictionofhighprioritynotifications
LowerrawmaterialpricesthroughhigherforecastaccuracyandAI-poweredmarketintelligenceandimprovedhedgingofrawmaterialprices
Optimizedthird-partyspendthroughbetterschedulingandoptimizedprocurement
Reducedinvoiceverificationthroughautomatedsettlement
Reducedforeignexchangeriskifchemicaltokenimplemented
Reducedemployeedatamaintenance
Individualized,adaptivelearningtools
ENABLER
Procurement
Finance
HR
Asaresultofallthetechnologicaldisruption,thetypicalsequenceofactivitiesfromsensingcustomerdemandtofulfillinganorderwillsoonlookverydifferentfromtoday.(Figure5)
Thedisruptivepotentialassociatedwiththesetechnologiesishuge,andchemicalcompaniesneedtorethinknowhowtheirorganizationswilloperateinthenearfuture.
Figure5:Disruptivechangeincustomerdemand-to-fulfillmentcycle
AI-basednextbestaction
forhumancustomerinteraction
Blockchain-baseddemanddetection
Automated,blockchain-based
settlement
Campaign/offeringdesigned
bymarketingteam
FULFILMENT CUSTOMER
LogisticalplansassistedbyAI,
materialhandlingbyrobots
Virtualassistant-executed
positioningtocustomers
AI-basedsynthesisand
productioninautonomousplant
DIGITALPLANT
VIRTUALASSISTANT
Contextualquotedeterminedby
AI-poweredpricingengine
Virtualassistant-basedcustomerservice
Virtualassistant-basedordertaking,
blockchain-basedcontracting
10
PAGE
13
ARTIFICIALINTELLIGENCE
Today,AIisalreadyapartofdailylife.Forexample,itisnotatallunusualfor
someonetotakeUbertotheairport,usingthetimeinthecartocatchuponpresortede-mailanddosomeonlineshopping—arrivingafteraproductiveandseamlessexperience.
Inthenot-too-distantpast,thatexperiencewouldnothavebeenpossible.Today,itis,becauseitislargelybasedonAItechnologies.AIhelpsthepersonandtheUberdrivertoconnect,navigatearoundtrafficjamsandfindthebestroute.Itprioritizese-mailandscreensoutfraudulentmessages,providesshoppingrecommendations,andevenoffersaselectionofmusictailoredtotherider’stastes.And
AI-enabledautonomousvehiclesareonthevergeofbeingapprovedforwidespreaduseonpublicroads—whichmeansthat
thecarsoonmayhavenodriver.
AIisagroupoftechnologiesthatincludesmachinelearning,computervisionandspeechrecognition,anditisatthecoreoftoolssuchaspredictiveanalytics,advancedprocessautomation,roboticsandmechanicalautomation,amongmanyothers.AIhasquicklybecomerelevantinprivatelifeandbusiness-to-consumer(B2C)contexts,anditwillsoonhaveatremendousimpactonthechemicalindustry.
AIhasthepotentialtodisruptbusinessoperationsbyhelpingcompaniesto:
Makemoreinformeddecisions.
Makebetteruseofexistingdata.
Developnewinsightsfromlargeamountsofdatathatwouldoverwhelmhumans.
Acceleratelearning.
Automaterepetitive,transactionalandjudgment-relatedtasks.
Reducehumaninvolvementinphysicaltasks.
Createnewservicesandofferings.
Tworecentexamplesshowjusthowfar
onetypeofAI—naturallanguagerecognitionandgeneration—haveevolved.Inrecentyears,auniversityusedIBMtechnologytocreate
“JillWatson,”anAI-basedteachingassistantthatrepliedtostudents’e-mails,2andtheGoogleDuplexAIsystem,whichsuccessfullyreservedarestauranttablebyphone.3Inbothcases,thepeopleonthereceivingendwereunabletodetectthattheywereconversingwitharobot.
Inabusinesscontext,AIisusedtohandleroutine,rules-basedandincreasinglycomplextasks,suchascapitalmarketinvestmentmanagement,eveniftherearemultipleandvaryingfactorsandsentimentstoconsider.
AIdoesthissowellthat56percentofhedgefundsbasetheirinvestmentdecisionsonAIandmachinelearning,andmorethanaquarteruseAItoexecutetransactionsautonomously.4
Ingeneral,today’sAIseeminglymimicsthehumanbraintocarryoutsimpletasksandmaketraditionaldigitizationandautomationmoresophisticated,whichinturnenablesthehumanworkforcetobemoreeffectiveandefficient—aswellasmorecreative.
Forexample,bycapturingandusingexistingknowledgeinautomatedalgorithmsandcreatingnewinsightsthroughmachinelearning,AIaugmentsthehumanworkforce.Asaconsequence,AIwillplayanimportantroleinhelpingtosustainandaccelerateproductivityandgrowthinareaswherethereisadecliningworkingpopulation,suchastheEuropeanUnion.5
ARTIFICIALINTELLIGENCEASDISRUPTOR
AIhasthepotentialtodisrupteveryaspectoftoday’schemicalindustrybusinessmodel(customerinteraction,operations,administration,etc.)andtoopenthedoortonewproductsandserviceofferings.Forexample,itcouldenablechemicalcompaniesto:
Conducthighlytargeted,proactivesaleswithAI-basedcustomer-specificforecastinganddemandsensing—whichcouldmakeitpossibletoship
goodsbeforethecustomerplacesanorder.
Reducepriceleakagethroughsuperiorproductqualityandfasterinnovationcycles,usingdata-drivenR&D.
Developamuchdeeperunderstandingofcustomersandbetteridentifynewapplications/marketsforexistingandnewproducts.
Increaseproductionthroughputbyensuringfirst-time-rightproduction,andtargetingreactionyield,optimized
change-oversandadvancedmaintenancethatreducesunplanneddowntime.
Reducecustomerchurnratesthrough24/7customerservice,withhigherlevelsofdata-drivenservicequality.
Useon-sitenaturallanguage-enabledvirtualtechnicalsalesagentsthatarealwaysavailabletoconsultwithcustomersincaseofproblems/inquiries,andtoinformthemaboutnewofferings.
Byenablingnewlevelsofefficiency
andeffectivenessinallbusinessfunctions,AIwillhaveasignificantimpactonindividualjobprofilesandtheworkforceoverall.
ManytransactionalandsimpletaskswillbeperformedbyAI,therebyenablingpeople
tofocusonmorevalue-addedworkinvolvingcomplexjudgmentandcreativity.Accenturehasassessedtasksin30typicaljobfamiliesinthechemicalindustryandfoundthatnotonlyoperationaltasks(suchasproduction
orsales)willbedisrupted,butalsoadministrative,managerialandscientifictasks.Allinall,AIisexpectedtoreducehumaneffortacrossthesejobfamiliesbyupto45percent.Intheshort-andmedium-term,however,itwillcreatealargedemandforhumanworkerswhowilldevelop,monitorandmanageAI-basedoperations.6
VISIONFORTHEINDUSTRY
LookingatAI’spowerfulandevolvingcapabilities,it’spossibletoimagineafutureinwhichthechemicalcompanyneversleeps—whereautonomousplantsrun24/7withmaximizedefficiency,yieldingproductsinspecwithoutwasteandwithminimaldowntime.It’safuturewhere:
Tedious,routinemanualworkisobsolete,andsafetyandqualityareatunprecedentedhighlevels.
Centralizedteamsofdatascientists,chemicalprocessengineersandproductionmanagerssuperviseautonomousplantsandusereal-timedigitaltwinsimulation
tooptimizeoperationsconstantly.
Dedicatedinterventionteamsofoperators,pooledforlargerplantclusters,are
onstandbytohandleproblemsandunexpectedevents.
AIaugmentssupervisionactivitiessuchasinspectionrounds,helpingtoincreaseoverallplantlifetime.
ProductiondataisfullyavailableforR&Dandcustomerservice.
Inthisworld,R&DwilldrawonatremendousamountofknowledgeandAI-poweredrobotswillconductexperimentswithsuchprecisionthatagivenexperimentwillneverhave
tobeperformedtwice.WithanAIsystemcontinuouslycrawlingthedataecosystem,newapplicationsandpotentialfieldsofinterestwillbeidentifiedquickly,andtheirchancesofsuccesswillbepre-assessedonthespot.Backedbyfullyautomatedchemicallabs,furtherexperimentationwillbetriggeredwithouthumaninteraction,resultswillbeautomaticallyassessedbasedonhistoricinternalandexternaldata,andworkerswillbegivencompletedossiersonpotentialactionstodecidewhethertoengagefurther.Virtuallynotimewillbespentonguessingvaluepotentials,diggingintopreviouslyconductedexperimentstoassesstechnicalfeasibility,
orsearchingtheinternetforsupporting
information—whichaltogetherwillenableleapsinefficiencyandeffectivenessthatwillspeedupproductinnovationcycles.
Meanwhile,customerservicewillusevirtualagentstoincreaseefficiencyandservethecustomer24/7,onlineorbyphone.Accessingallinternalapplication,productionandshippingdata,aswellascustomerinformation,frontlineAIsystemswillworkwithacompletesetofdatathatmakesitpossibleforthetechnologytohandlemostinquiriesonitsown.Onlythemore-complexquestionswillbepassedtospecializedAIsystemsorhumanexperts.
Forexample,withapplication-relatedquestions,theAIlabsystemwillconductsimulationsbasedonhistoricand/orextrapolatedR&D,applicationandcustomerdata,andthenwillconductpreliminarytrialsovernightinafullyautomatedlab.Thenextmorning,thehumanapplicationexpertwillhaveanexperimentallyverifiedrecommendationtoreviewandforwardtothecustomer.
InthisAI-enabledfuture,chemicalcompanieswillproactivelygivecustomerstailoredoffersbasedonmarketinformation,R&Doutput,currentproductportfolioandtheirownprocessdata.Andwiththegreaterefficiencyinvolvedsuchcustomizedofferscanbeextendedtoaverybroadrangeofcustomers,includinglower-priorityaccounts.Inaddition,AI-baseddemandsensingwillletchemicalcompaniesknowexactlywhenanewshipmentisrequired,meaningthatcustomerswillneverrunoutofproduct.AIwillsimplifythecustomerorderingprocessandoptimizewarehousing,increasingcustomerretentionandsimplifyingproductionplanning.
Altogether,suchproactive,individualizedinteractionswillmakeitpossibletodevelopdeeperwin-winrelationshipswithcustomers.
Overall,thisvisionpaintsapictureinwhichtomorrow’sleadingchemicalcompanieswilldrawonAItocreateanefficientandinnovativeenterprisewherehumanintelligenceissupportedbyanAI-enableddigitalworkforce.
REALITYCHECK:ARTIFICIALINTELLIGENCEINTHEINDUSTRYTODAY
Thechemicalindustryisalreadyhighlydata-driven,withitscorebusinessgeneratinglargeamountsofdata.(Figure6)
Forexample,atypicalplanthas5,000to10,000piecesofstaticandrotatingequipment,eachsendingconditiondatasuchaspressure,
temperature,flowrateandspeedofrotationeveryfewseconds—generatingasmuchas50–500terabytesofinformationperyear.Inadditiontoassetdata,chemicalcompaniesneedtomanageproductdata:Here,eachbusinesshashundreds(ifnotthousands)ofstock-keepingunits,includingproductvariants,gradesandpackaging.
InR&D,researcherstypicallyaddtodatavolumesthroughmultipletestseriesandmeasurementsthatyieldinsightsintothecomplexstructure-propertyrelationshipsofchemicalsubstancesortheperformanceofchemicalformulationsinhighlyspecificapplications.Inaddition,companiesalsogeneratealargevolumeofstructuredand
unstructuredtransactionaldataincustomerandsupplierinteractions—informationsuchasordersizes,prices,shippingaddresses,rawmaterialclassification,visitreports,
e-mails,applicationd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (一模)广安市高2023级高三第一次模拟考试政治试卷(含答案)
- 2026年中国航空工业集团公司北京航空精密机械研究所招聘备考题库完整答案详解
- 2026年南澳县公安局关于公开招聘警务辅助人员的备考题库及参考答案详解
- 2026年兴业银行大连分行社会招聘备考题库及1套完整答案详解
- 2026年准格尔旗教育体育局招聘备考题库及完整答案详解1套
- 2026年国家知识产权局专利局专利审查协作天津中心招聘备考题库含答案详解
- 2026年东莞市公安局万江分局警务辅助人员招聘5人备考题库及完整答案详解1套
- 2026年公安部第一研究所公开招聘预报名公安部第一研究所备考题库及答案详解参考
- 育儿教育知识课件
- 广东胜通和公司招聘笔试题库2026
- 2026秋招:澳森特钢集团试题及答案
- 哲学史重要名词解析大全
- 2026年宁夏黄河农村商业银行科技人员社会招聘备考题库及答案详解(易错题)
- DB37-T4975-2025分布式光伏直采直控技术规范
- 脱硫废水零排放项目施工方案
- 2026年海南卫生健康职业学院单招综合素质考试题库参考答案详解
- 急性心梗合并急性心衰护理
- 肺原位腺癌病理课件讲解
- 传承三线精神、砥砺奋进前行课件
- 消防设施维保服务方案投标文件(技术方案)
- 堵漏施工方案报价
评论
0/150
提交评论