版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性和奇偶性一.教学内容函数的单调性和奇偶性
二.重、难点重点:函数单调增、减区间的意义,应用定义判断函数的单调性,奇偶性。难点:证明函数的单调性
【典型例题】[例1]如果函数在上是减函数,求a的取值范围。解:对称轴,由得[例2]判断函数()在R上的单调性解:设、且则当时,当时,和中必有之一不为0(∵)∴当时,在上面讨论结合(1)和(2)有∴函数在R上是减函数[例3]已知函数,在R上是增函数,求证:在R上也是增函数。证:任取,且则因为在R上是增函数所以又∵在R上是增函数∴∴在R上是增函数结论:同增异减:与增减性相同(反),函数是增(减)函数。[例4]求函数的单调区间解:首先确定义域:∴在和两个区间上分别讨论任取、且则要确定此式的正负只要确定的正负即可这样,又需判断大于1还是小于1,由于的任意性。考虑到要将分为与(1)当时,∴为减函数(2)当,时,∴为增函数同理(3)当时,为减函数(4)当时,为增函数[例5]判断下列函数是否具有奇偶性(1)(2)(3)(4)(5)注:对于定义域内的任意一个,都有成立,则称为偶函数。对于定义域内的任意一个,都有成立,则称为奇函数。解:(1)函数与定义域为R∴为奇函数(2)函数的定义域为R又∵∴为偶函数(3)函数的定义域为∴为非奇非偶函数(4)函数的定义域为,此时∴既是奇函数又是偶函数(5)由得,知定义域关于原点不对称∴既不是奇函数也不是偶函数[例6]函数在上为奇函数,且当时,,则当时,求的解析式。解:设则∴又∵在R上为奇函数∴∴当时,∴[例7]设为奇函数,且在定义域上为减函数,求满足的实数a的取值范围。解:由为奇函数知:由是减函数知:∴解得[例8]设是定义在上的增函数,且,求满足不等式的的取值范围。解:又∴化为∴解得
【模拟试题】一.选择题1.,当时递增,当时递减,则的值等于()A.13B.1C.21D.2.若奇函数的图象过点,则必过点()A.B.C.D.3.函数在,上都是增函数,则的取值范围()A.B.C.D.4.在上是增函数,则的增区间是()A.B.C.D.
二.填空题1.函数的递增区间是。2.若函数是R上的增函数,且对一切都成立,则实数a的取值范围是。3.已知,,则。4.若是奇函数,则函数,的图象关于对称。
三.解答题1.已知是偶函数,在上是增函数,那么在上是增函数,还是减函数?并加以证明。2.函数在上单调递增,求实数a的取值范围。3.定义在上的偶函数,当时,单调递减,若,求的取值范围。
【试题答案】一.1.C2.D3.D4.B
二.1.2.3.314.轴
三.1.设由于是偶函数,则,①由假设可知,且又已知在上是增函数,则②将①代入②得即故在上是减函数2.解:在上单调递增∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年艾防中心关于公开招聘参比实验室合同制聘用工作人员的备考题库及完整答案详解1套
- 2025年黄冈市文化和旅游局所属事业单位专项公开招聘工作人员备考题库及一套答案详解
- 土方承包合同
- 2026年生活品质提升指南合同
- 2026年建筑工程总承包合同
- 2025年张家港市第三人民医院自主招聘编外合同制卫技人员备考题库及参考答案详解一套
- 2025年郑州铁路局公开招聘1872人备考题库及答案详解一套
- 昆明市官渡区云南大学附属中学星耀学校2026年校园招聘备考题库及一套参考答案详解
- 中国电建集团昆明勘测设计研究院有限公司招聘20人备考题库及答案详解一套
- 2025年宁波市公安警务保障服务中心招聘编外工作人员6人备考题库及答案详解1套
- 广州市荔湾区事业单位招聘事业编制人员考试真题2022
- 淘金客股票培训教程完整版中
- GB/T 19867.4-2008激光焊接工艺规程
- 上下班交通安全知识考试试卷
- 航天航空企业介绍工作汇报总结计划PPT模板
- 食堂消毒表格
- 模具定期保养点检表
- 电工基础(第六版)课后习题答案
- 快消品年度工作计划
- 医院后勤设备安全运维管理
- 思想道德与法治课件:第六章 第四节 自觉尊法学法守法用法
评论
0/150
提交评论