高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)_第1页
高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)_第2页
高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)_第3页
高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)_第4页
高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)(2)【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=.即当ω0=时物体A开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图,光滑轨道abcd固定在竖直平面内,ab水平,bcd为半圆,在b处与ab相切.在直轨道ab上放着质量分别为mA=2kg、mB=1kg的物块A、B(均可视为质点),用轻质细绳将A、B连接在一起,且A、B间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能Ep=12J.轨道左侧的光滑水平地面上停着一质量M=2kg、长L=0.5m的小车,小车上表面与ab等高.现将细绳剪断,之后A向左滑上小车,B向右滑动且恰好能冲到圆弧轨道的最高点d处.已知A与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g取10m/s2,求(1)A、B离开弹簧瞬间的速率vA、vB;(2)圆弧轨道的半径R;(3)A在小车上滑动过程中产生的热量Q(计算结果可含有µ).【答案】(1)4m/s(2)0.32m(3)当满足0.1≤μ<0.2时,Q1=10μ;当满足0.2≤μ≤0.3时,【解析】【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度;(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.【详解】(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律:由能量关系:解得vA=2m/s;vB=4m/s(2)设B经过d点时速度为vd,在d点:由机械能守恒定律:解得R=0.32m(3)设μ=μ1时A恰好能滑到小车左端,其共同速度为v,由动量守恒定律:由能量关系:解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A和小车不共速,A将从小车左端滑落,产生的热量为(J)(ⅱ)当满足0.2≤μ≤0.3时,A和小车能共速,产生的热量为,解得Q2=2J3.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R,A点与圆心O等高,B点在O的正上方,AD为与水平方向成θ=45°角的斜面,AD长为7R.一个质量为m的小球(视为质点)在A点正上方h处由静止释放,自由下落至A点后进入圆形轨道,并能沿圆形轨道到达B点,且到达B处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到B点时的速度大小vB(2)小球第一次落到斜面上C点时的速度大小v(3)改变h,为了保证小球通过B点后落到斜面上,h应满足的条件【答案】(1)(2)(3)【解析】【分析】【详解】(1)小球经过B点时,由牛顿第二定律及向心力公式,有解得(2)设小球离开B点做平抛运动,经时间t,下落高度y,落到C点,则两式联立,得对小球下落由机械能守恒定律,有解得(3)设小球恰好能通过B点,过B点时速度为v1,由牛顿第二定律及向心力公式,有又得可以证明小球经过B点后一定能落到斜面上设小球恰好落到D点,小球通过B点时速度为v2,飞行时间为,解得又可得故h应满足的条件为【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9倍。(1)求小球在最低点时的速度大小;(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。【答案】(1)(2)【解析】【详解】(1)在最低点,由向心力公式得:解得:(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。则小球不能通过最高点,由动能定理得:且则也不可以低于O水平面则所以电场强度可能的大小范围为5.如图所示,在光滑水平桌面EAB上有质量为m=2kg的小球P和质量为M=1kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2m,D点到桌面边缘的水平距离为x=0.2m,重力加速度为g=10m/s2,求:(1)小球P经过半圆形轨道最低点B时对轨道的压力大小NB′;(2)小球Q与橡皮泥球S碰撞前瞬间的速度大小vQ;(3)被压缩的轻弹簧的弹性势能Ep。【答案】(1)120N(2)2m/s(3)3J【解析】【详解】(1)小球P恰好能通过半圆形轨道的最高点C,则有mg=m解得vC=对于小球P,从B→C,由动能定理有解得vB=在B点有NB-mg=m解得NB=6mg=120N由牛顿第三定律有NB′=NB=120N(2)设Q与S做平抛运动的初速度大小为v,所用时间为t,根据公式h=gt2,得t=0.2s根据公式x=vt,得v=1m/s碰撞前后Q和S组成的系统动量守恒,则有MvQ=2Mv解得vQ=2m/s(3)P、Q和弹簧组成的系统动量守恒,则有mvP=MvQ解得vP=1m/s对P、Q和弹簧组成的系统,由能量守恒定律有解得Ep=3J6.如图所示的水平地面上有a、b、O三点.将一条轨道固定在竖直平面内,粗糙的ab段水平,bcde段光滑,cde是以O为圆心,R为半径的一段圆弧,可视为质点的物块A和B紧靠在一起,中间夹有少量炸药,静止于b处,A的质量是B的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B到最高点d时速度沿水平方向,此时轨道对B的支持力大小等于B所受重力的3/4,A与ab段的动摩擦因数为μ,重力加速度g,求:(1)物块B在d点的速度大小;(2)物块A滑行的距离s;(3)试确定物块B脱离轨道时离地面的高度;(4)从脱离轨道后到落到水平地面所用的时间.【答案】(1)(2)(3)(4)【解析】(1)设物块A和B的质量分别为mA和mB解得(2)设A、B分开时的速度分别为v1、v2,系统动量守恒

B由位置b运动到d的过程中,机械能守恒A在滑行过程中,由动能定理联立得(3)设物块脱离轨道时速度为v,FN=0向心力公式而解得,脱离轨道时离地面的高度(4)离轨道时后做向下斜抛运动竖直方向:解得:点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时FN=0;能选择合适的物理规律列出方程即可解答.7.如图所示,用两根长度均为l的细线将质量为m的小球悬挂在水平的天花板下面,轻绳与天花板的夹角为θ.将细线BO剪断,小球由静止开始运动.不计空气阻力,重力加速度为g.求:(1)剪断细线前OB对小球拉力的大小;(2)剪断细线后小球从开始运动到第一次摆到最高点的位移大小;(3)改变B点位置,剪断BO后小球运动到最低点时细线OA的拉力F2与未剪断前细线的拉力F1之比的最大值.【答案】(1)(2)(3)【解析】(1)得(2)小球运动到左侧最高点时绳与天花板夹角为αmglsinα=mglsinθ得α=θX=2lcosθ(3)小球运动到最低点时速度为vF1=F得:当时可得8.如图甲所示,陀螺可在圆轨道外侧旋转而不脱落,好像轨道对它施加了魔法一样,被称为“魔力陀螺”.它可等效为一质点在圆轨道外侧运动模型,如图乙所示.在竖直平面内固定的强磁性圆轨道半径为R,A、B两点分别为轨道的最高点与最低点.质点沿轨道外侧做完整的圆周运动,受圆轨道的强磁性引力始终指向圆心O且大小恒为F,当质点以速率通过A点时,对轨道的压力为其重力的7倍,不计摩擦和空气阻力,重力加速度为g.(1)求质点的质量;(2)质点能做完整的圆周运动过程中,若磁性引力大小恒定,试证明质点对A、B两点的压力差为定值;(3)若磁性引力大小恒为2F,为确保质点做完整的圆周运动,求质点通过B点最大速率.【答案】(1)(2)(3)【解析】【试题分析】对陀螺受力分析,分析最高点的向心力来源,根据向心力公式即可求解;在最高点和最低点速度最大的临界条件是支持力为0,根据向心力公式分别求出最高点和最低点的最大速度.(1)在A点:①根据牛顿第三定律:②由①②式联立得:③(2)质点能完成圆周运动,在A点:根据牛顿第二定律:④根据牛顿第三定律:⑤在B点,根据牛顿第二定律:⑥根据牛顿第三定律:⑦从A点到B点过程,根据机械能守恒定律:⑧由④⑤⑥⑦⑧联立得:为定值,得到证明.(3)在B点,根据牛顿第二定律:当FB=0,质点速度最大,⑨由③⑨⑩联立得:【点睛】本题考查竖直平面内的圆周运动的情况,在解答的过程中正确分析得出小球经过最高点和最低点的条件是解答的关键,正确写出向心力的表达式是解答的基础.9.如图所示,位于竖直平面内的光滑有轨道,由一段倾斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度).求物块初始位置相对于圆形轨道底部的高度h的取值范围.【答案】2.5R≤h≤5R【解析】试题分析:要求物块相对于圆轨道底部的高度,必须求出物块到达圆轨道最高点的速度,在最高点,物体做圆周运动的向心力由重力和轨道对物体的压力提供,当压力恰好为0时,h最小;当压力最大时,h最大.由机械能守恒定律和牛顿第二定律结合解答.设物块在圆形轨道最高点的速度为v,由机械能守恒得:物块在最高点受的力为重力mg,轨道的压力,重力与压力的合力提供向心力,有物块能通过最高点的条件是由以上式得联立以上各式得根据题目要求由以上各式得由此可得所以h的取值范围是点睛:物体在竖直平面内做圆周运动的过程中在最高点的最小速度必须满足重力等于向心力,这是我们解决此类问题的突破口.要知道小球做圆周运动时,由指向圆心的合力充当向心力.10.如图所示,一个可视为质点,质量的木块从P点以初速度向右运动,木块与水平面间的动摩擦因数为,木块运动到M点后水平抛出,恰好沿竖直的粗糙圆弧AB的A点的切线方向进入圆弧不计空气阻力。已知圆弧的半径,半径OA与竖直半径OB间的夹角,木块到达A点时的速度大小。已知,求:(1)到M的距离L;(2)、A间的距离s;(3)若木块到达圆弧底端B点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论