




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省鞍山市新甸中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列{an}中,,,则数列的通项公式an为(
)A. B. C. D.参考答案:C【分析】直接利用等差数列公式解方程组得到答案.【详解】故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.2.已知A={1,2,4,8,16},,则A∩B=().A.{1,2} B.{2,4,8} C.{1,2,4} D.{1,2,4,8}参考答案:C由已知可得,所以,所以选C.
3.若曲线y=x4的一条切线l与直线x+4y﹣8=0垂直,则l的方程是()A.4x﹣y﹣3=0 B.x+4y﹣5=0 C.4x﹣y+3=0 D.x+4y+3=0参考答案:A【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用.【分析】欲求l的方程,根据已知条件中:“切线l与直线x+4y﹣8=0垂直”可得出切线的斜率,故只须求出切点的坐标即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切点坐标.从而问题解决.【解答】解:设与直线x+4y﹣8=0垂直的直线l为:4x﹣y+m=0,即曲线y=x4在某一点处的导数为4,而y′=4x3,∴y=x4在(1,1)处导数为4,将(1,1)代入4x﹣y+m=0,得m=﹣3,故l的方程为4x﹣y﹣3=0.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.某工厂从2000年开始,近八年以来生产某种产品的情况是:前四年年产量的增长速度越来越慢,后四年年产量的增长速度保持不变,则该厂这种产品的产量与时间的函数图像可能是(
)参考答案:B5.在△ABC中,a、b、c分别为角A、B、C的对边,它的面积为,则角A等于(
)A.30° B.45° C.60° D.135°参考答案:D【分析】利用面积公式,借助余弦定理,即可容易求得结果.【详解】因为,且,故可得,即,又因为,故可得.故选:D.【点睛】本题考查三角形的面积公式以及余弦定理的应用,属综合基础题.6.已知,则的值为
A.
B.
C.
D.参考答案:B7.执行如图所示的程序框图,则输出S的值为A.3
B.2020
C.3030
D.1010参考答案:C8.已知五个点的坐标分别为,O为坐标原点,点P为四边形ABCD内的一个动点,则使得向量的夹角不大于的概率是(
)A.
B.
C.
D.参考答案:A9.函数的最小正周期为
(
)A
B
C
D参考答案:B10.A
-4
B
4
C
-2
D
2参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.若=,=,则
.参考答案:(-3,-2)12.若,则x的取值范围是________.参考答案:【分析】利用反函数的运算法则,定义及其性质,求解即可.【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.13.(4分)||=1,||=2,,且,则与的夹角为
.参考答案:120°考点: 数量积表示两个向量的夹角.专题: 计算题.分析: 根据,且可得进而求出=﹣1然后再代入向量的夹角公式cos<>=再结合<>∈即可求出<>.解答: ∵,且∴∴()?=0∵||=1∴=﹣1∵||=2∴cos<>==﹣∵<>∈∴<>=120°故答案为120°点评: 本题主要考查了利用数量积求向量的夹角,属常考题,较易.解题的关键是熟记向量的夹角公式cos<>=同时要注意<>∈这一隐含条件!14.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.参考答案:1【分析】根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题15.参考答案:略16.已知,则的最小值为
.参考答案:-617.数列满足=
若,则=___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,正四棱柱ABCD﹣A1B1C1D1中,底面边长为,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.(Ⅰ)求证:平面B1EF⊥平面BDD1B1;(Ⅱ)求点D1到平面B1EF的距离d;(Ⅲ)求三棱锥B1﹣EFD1的体积V.参考答案:【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;点、线、面间的距离计算.【分析】(1)方法一:欲证明平面B1EF⊥平面BDD1B1,先证直线与平面垂直,观察平面BDD1B1为正四棱柱ABCD﹣A1B1C1D1的对角面,所以AC⊥平面BDD1B1,故连接AC,由EF∥AC,可得EF⊥平面BDD1B1方法二:欲证明平面B1EF⊥平面BDD1B1,先证直线与平面垂直,由题意易得EF⊥BD,又EF⊥D1D,所以EF⊥平面BDD1B1(2)本题的设问是递进式的,第(1)问是为第(2)问作铺垫的.由第(1)问可知,点D1到平面B1EF的距离d即为点D1到平面B1EF与平面BDD1B1的交线B1G的距离,故作D1H⊥B1G,垂足为H,所以点D1到平面B1EF的距离d=D1H.下面求D1H的长度.解法一:在矩形BDD1B1及Rt△D1HB1中,利用三角函数可解.解法二:在矩形BDD1B1及Rt△D1HB1中,利用三角形相似可解.解法三:在矩形BDD1B1及△D1GB1中,观察面积大小关系可解.(3)本题的设问是递进式的,第(2)问是为第(3)问作铺垫的.解决三棱锥求体积的问题,关键在于找到合适的高与对应的底面,由第(2)问可知,D1H即为三棱锥B1﹣EFD1的高,所以B1EF为对应的底面.【解答】解:(Ⅰ)证法一:连接AC.∵正四棱柱ABCD﹣A1B1C1D1的底面是正方形,∴AC⊥BD,又AC⊥D1D,故AC⊥平面BDD1B1.∵E,F分别为AB,BC的中点,故EF∥AC,∴EF⊥平面BDD1B1,∴平面B1EF⊥平面BDD1B1.证法二:∵BE=BF,∠EBD=∠FBD=45°,∴EF⊥BD.又EF⊥D1D∴EF⊥平面BDD1B1,∴平面B1EF⊥平面BDD1B1.(Ⅱ)在对角面BDD1B1中,作D1H⊥B1G,垂足为H.∵平面B1EF⊥平面BDD1B1,且平面B1EF∩平面BDD1B1=B1G,∴D1H⊥平面B1EF,且垂足为H,∴点D1到平面B1EF的距离d=D1H.解法一:在Rt△D1HB1中,D1H=D1B1?sin∠D1B1H.∵,,∴.解法二:∵△D1HB1~△B1BG,∴,∴.解法三:连接D1G,则三角形D1GB1的面积等于正方形DBB1D1面积的一半,即,∴.(Ⅲ)=.19.(本题满分12分)若平面内给定三个向量(1)求。(2)求满足的实数m,n的值。参考答案:20.已知等差数列{an}的公差,数列{bn}满足,集合.(1)若,,求集合S;(2)若,求d使得集合S恰有两个元素;(3)若集合S恰有三个元素,,T是不超过5的正整数,求T的所有可能值,并写出与之相应的一个等差数列{an}的通项公式及集合S.参考答案:(1);(2)或;(3)或4,时,,;时,,【分析】(1)根据等差数列的通项公式写出,进而求出,再根据周期性求解;(2)由集合的元素个数,分析数列的周期,进而可求得答案;(3)分别令,2,3,4,5进行验证,判断的可能取值,并写出与之相应的一个等差数列的通项公式及集合【详解】(1)等差数列的公差,,数列满足,集合.当,所以集合,0,.(2),数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.(3)①当时,,集合,,,符合题意.与之相应的一个等差数列的通项公式为,此时.②当时,,,,或者,等差数列的公差,,故,,又,2当时满足条件,此时,1,.与之相应的一个等差数列的通项公式为,此时【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题.21.(14分)已知全集U=R,A={x|﹣3<x≤6,x∈R},B={x|x2﹣5x﹣6<0,x∈R}.求:(1)A∪B;(2)(?UB)∩A.参考答案:22.已知函数(1)求的最小正周期和最大值;(2)讨论在上的单调性.参考答案:(1)的最小正周期为,最大值为;(2)在上单调递增;在上单调递减.试题分析:(1)由条件利用诱导公式、二倍角的正弦公式、二倍角的余弦公式以及辅助角公式化简函数的解析式,再利用正弦函数的周期公式可得函数的周期,根据三角函数的有界性求得的最大值;(2)根据可得,利用正弦函数的单调性,分类讨论求由,可求得在上的单调区间.试题解析:(1)f(x)=sin(-x)sinx-cos2x=cosxsinx-(1+cos2x)
=sin2x-cos2x-=sin(2x-)-,
因此f(x)的最小正周期为π,最大值为.
(2)当x∈,时,0≤2x-≤π,从而
当0≤2x-≤,即≤x≤时,f(x)单调递增;
当≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿生产安全培训课件
- 服装设计有哪些学校
- 电气自动化工作简历
- 燃气公司安全管理培训
- 高等教育教学论文
- 小学学期教研工作总结
- 销售总监员工培训
- 反歧视艾滋病培训
- 中班健康不挑食的乖宝宝
- 培训项目回顾
- 初二生地会考复习资料全
- 里氏硬度法检测钢材强度范围记录表、钢材里氏硬度与抗拉强度范围换算表
- 《屹立在世界的东方》示范课教学课件【人教部编版小学道德与法治五年级下册】
- 四川省宜宾市翠屏区中学2022-2023学年数学八年级第二学期期末检测试题含解析
- 2020-2021成都石室联合中学蜀华分校小学数学小升初模拟试卷附答案
- 某冶金机械厂供配电系统设计
- 《在中亚细亚草原上》赏析 课件
- 城市轨道交通供电技术442页完整版教学课件汇总全书电子教案
- Q/GDW248-2008输变电工程建设标准强制性条文实施管理规程第3部分:变电站建筑工程施工教程文件
- 小学生综合素质评价方案与评价表
- 隧道施工安全技术教育培训记录(共19页)
评论
0/150
提交评论