




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PopulationGrowthandLimits(Ch.52)Populationgrowth:(Pg.1158) Whatispopulationgrowth?Populationgrowth:(Pg.1158)Whatispopulationgrowth? Thechangeinthenumberofindividuals inapopulationthroughtime.Populationgrowth:(Pg.1158)Twomajorfactorsthataffectpopulationgrowth: 1)Birthrates 2)DeathratesDescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)DescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)Weconsiderchangesinpopulationsizeover time-therefore,therehastobeatimeinterval2)Forsimplicity,wewillassumeimmigrationandemigrationareequal3)BirthratesanddeathratesareourvariablesSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalN=PopulationSize
N=changeinpopulation sizet=time
t=timeinterval (appropriatetolifespan andgenerationtimeof species)changeSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalRewriteVerbalmodelas,N/t=B-D B=absolute D=absolute #ofbirths #ofdeaths intimeintervalintime intervalN/t=B-DB=bNwhereb=thenumberofoffspring producedperyearbyan averagememberofthe population =(theannualpercapitabirthrate)Absolute#ofbirthsPopulationsizeN/t=B-DB=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/year Whatisthepercapitabirthrate?
B=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/yearPlugintoequation: B=bN
34=(b)1000 34/1000=b
b=0.034percapita birthrateN/t=B-D
IfB=bN,
WhatdoesDequal?
N/t=B-DB=bN WhatdoesDequal? D=dN
wheredisthepercapita deathrateAbsolute#ofdeathsN/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN
N/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN
Howcouldwesimplifythisexpression?
N/t=B-DN/t=bN -dN
Howcouldwesimplifythisexpression?
PullNout,N(b–d)
N/t=bN -dNPullNout,N(b–d) r=b-d
r=differenceinpercapita birthanddeathrates
(r=percapitapopulationgrowth)Ecologistsareinterestedinoverallchangesinpopulationsize,so“r”isusedinmodelsr=b-d r=differenceinpercapita birthanddeathrates (r=percapitapopulationgrowth)“r”tellsuswhetherapopulationisgrowing(+values)ordeclining(-values)Zeropopulationgrowth(ZPG)iswhenb=d.Rewritepopulationgrowthequationas…N/t=bN -dNN/t=
N(b–d) usingr=b–dN/t=rNN/t=rNEcologistsusuallyusethedifferentialcalculusexpression
dN/dt=rNwhichexpressesinstantaneousgrowthrates=growthrateatanygivenpointintime.Draw–slopedN/dt=rNThemaximumpopulationgrowthrateiscalledthe
Intrinsicrateofincrease(rmax)Themaximumpopulationgrowthrateiscalledthe Intrinsicrateofincrease(rmax)Populationgrowthatrmaxiscalled
exponentialpopulationgrowthIfresourcesarenotlimited,anidealpopulationgrowsexponentiallyrmax=1rmax=0.5Pg.1160J-shapedcurvermaxisinfluencedbylifehistoryfeatures: 1)Ageatfirstreproduction 2)numberofoffspringproduced 3)howwelloffspringsurvivermaxisinverselyproportionaltogenerationtimeDosmallerorlargerorganismshavehigherrmax?Dosmallerorlargerorganismshavehigherrmax?SMALLERExponentialgrowthischaracteristicofpopulations…thatareintroducedintoneworunfilledenvironmentsthatarereboundingfromacatastrophiceventButwhataboutallotherpopulations? Dotheygrowexponentially?Butwhataboutallotherpopulations? Dotheygrowexponentially?
NONextModelofpopulationgrowth:(Pg.1160) “Logisticpopulationgrowth”which incorporatescarryingcapacityNextModelofpopulationgrowth: Logisticpopulationgrowthwhich incorporatescarryingcapacityCarryingcapacity(K)–themaximumpopulationsizethataparticularenvironmentcansupportwithnonetincreaseordecreaseoverarelativelylongperiodoftime(Pg.1160)“K”isnotanabsolute;Itvariesovertimeandspacewiththeabundanceoflimitingresources(ENVIRONMENTDEPENDENT!!!)Logisticpopulationgrowth: 1)incorporateschangesin“r”asNapproachesK 2)allowsrtovaryfromrmaxtozero 3)populationgrowthisrapidwhenN<<K 4)populationgrowthslowswhenNisclosetoKBuildingthemathematicalmodel:Startwith:
dN/dt=rNNewexpressions:IfK=maximumpopulationsizeforagivenenvironmentthen,K–N=the#ofadditionalindividualstheenvironmentcansustain
Buildingthemathematicalmodel:
Startwith:
dN/dt=rNNewexpressions: K–NTherefore,(K–N)/Ktellsuswhatfraction
ofKisstillavailableforpopulationgrowth
ex.Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth? (1000–10)/1000=.99or99%
ex.Using(K–N)/KEx. IfK=1000,andN=900,
ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=900,
ThenwhatfractionofKis stillavailableforpopulation growth?
(1000–900)/1000=.10or10%Using(K–N)/Kin
dN/dt=rN
Weget… Pg.1161
dN/dt=rN(K–N)/KThismodelreducesrasNincreasetowardK
ex.Pg.1161x=Pg.1161x=PercapitagrowthrateLogisticPopulationGrowth(Pg.1162):S-shapedcurveNaturalorlaboratorypopulationsfitthismodelreasonablywellHowever,thismodeldoesnotconsidertheeffectsofpredatorsandcompetitors,somanynaturalpopulationsdeviatefromthismodelSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundKTimeNKovershootoscillationsSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundK2)NotallpopulationreachorexistnearK.Manyinsectsandothersmall,rapidlyreproducingorganismsthataresensitivetoenvironmentalfluctuationsareinfluencedbyphysicalvariablesliketemperatureandmoisturewellbeforetheyreachKPopulationgrowthmodelsinfluencelifehistorycharacteristics(generalguidelinesasmostorganismsexhibitintermediatetraits) (Pg.1163)K–selectedpopulations:equilibriumpopulationsr-selectedpopulations:opportunisticpopulationsKnowTableNKKNK-selectedr-selectedWhatlimitspopulations?(Pg.1163)Whatlimitspopulations?Twobasictypesoffactors: 1)densitydependent
2)densityindependentdensitydependentfactors=populationregulationfactorsthatintensifyaspopulationdensityincreases (Pg.1164)Intraspecificcompetition–therelianceofindividualsofthesamespeciesonthesamelimitedresourcesSo,aspopulationsizeincreases,theavailableresourcesdecrease,andcompetitionforresourcesincreasesEx.CompetitionforresourcesCompetitioninfluencessurvivalCompetitionincreasesHighDensitycanresultin: 1)crowding 2)fewerresourcesforeachindividual 3)weakoffspring(duetoresourcesputintotheirproduction) 4)Build-upoftoxinsandwasteinenvironmentwhich negativelyinfluencesindividuals 5)Increase
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版小学英语四年级上册家校互动计划
- 小学一年级下册班主任主题活动计划
- 安康职业技术学院《工程计量与计价建工》2023-2024学年第二学期期末试卷
- 2025-2030耳感染治疗行业市场现状供需分析及投资评估规划分析研究报告
- 幼儿园小班11月教师培训计划
- 拍卖市场风险提示协议
- 塔城职业技术学院《社会工作机构人力资源管理》2023-2024学年第二学期期末试卷
- 西安航空学院《市场调查与预测B》2023-2024学年第二学期期末试卷
- 科技企业股权激励协议范文
- 成都中医药大学《植物学B》2023-2024学年第二学期期末试卷
- 2023年广西高考历史真题(含答案)
- 四川建筑施工资料表格(施工单位用表)全套
- 工作作风不严谨的表现及改进措施范文(通用5篇)
- 过滤器检验报告
- DB11-T 675-2014 清洁生产评价指标体系 医药制造业
- 2023家具采购合同范本专业版-1
- GB/T 29319-2012光伏发电系统接入配电网技术规定
- GB/T 11264-2012热轧轻轨
- 国学导论·巴蜀文化课件
- 《事业单位人事管理条例》及其配套制度讲义课件
- 试卷交接签字单
评论
0/150
提交评论