2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷含解析_第1页
2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷含解析_第2页
2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷含解析_第3页
2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷含解析_第4页
2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市开福区周南实验中学中考考前最后一卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.实数的倒数是()A. B. C. D.2.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.313.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19984.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm5.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.6.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A7.已知a为整数,且<a<,则a等于A.1 B.2 C.3 D.48.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ9.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形10.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8π B.16π

C.4π D.4π二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.12.如图,直线a、b相交于点O,若∠1=30°,则∠2=___13.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于_____;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.14.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.15.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则AE=_______.16.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.三、解答题(共8题,共72分)17.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.18.(8分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.19.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.()请直接写出袋子中白球的个数.()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)20.(8分)已知是关于的方程的一个根,则__21.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.22.(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.23.(12分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=,⊙O的半径为3,求OA的长.24.某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.(Ⅰ)求这两种品牌计算器的单价;(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】因为=,所以的倒数是.故选D.2、C【解析】

根据中位数的定义即可解答.【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:=30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3、B【解析】

根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.5、B【解析】

先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.6、B【解析】

根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.7、B【解析】

直接利用,接近的整数是1,进而得出答案.【详解】∵a为整数,且<a<,∴a=1.故选:.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.8、D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.9、C【解析】

根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.10、A【解析】

解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.12、30°【解析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.13、5见解析.【解析】

(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为,∵AB2=AD•AC,∴AD=AB2÷AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.14、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BP⊥AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP⊥AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以ΔABC的面积是115、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.设BD=,则AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合题意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.16、9n+1.【解析】

∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+1;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+1;∵第1个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=10=9×1+1,…,∴第n个图中正方形和等边三角形的个数之和=9n+1.故答案为9n+1.三、解答题(共8题,共72分)17、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.【解析】【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.【详解】(1)①如图1所示:连接OA、OB、OP,∵OA=OB,P为AB的中点,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“幂值”=2×2=20,故答案为:20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA•PB=PA′•PB′=20,∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,∵AO=OB,PO⊥AB,∴AP=PB,∴点P关于⊙O的“幂值”=AP•PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴关于⊙O的“幂值”=r2﹣d2,故答案为:点P关于⊙O的“幂值”为r2﹣d2;(3)如图1所示:过点C作CP⊥AB,,∵CP⊥AB,AB的解析式为y=x+b,∴直线CP的解析式为y=﹣x+.联立AB与CP,得,∴点P的坐标为(﹣﹣b,+b),∵点P关于⊙C的“幂值”为6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范围是﹣3≤b≤,故答案为:﹣3≤b≤.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.18、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.19、(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.20、10【解析】

利用一元二次方程的解的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,,,.故答案为10.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.21、证明见解析.【解析】

(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.22、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】

(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.【详解】解:证明:∵四边形是平行四边形,∴,,.∵点、分别是、的中点,∴,.∴.在和中,,∴.解:当四边形是菱形时,四边形是矩形.证明:∵四边形是平行四边形,∴.∵,∴四边形是平行四边形.∵四边形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四边形是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.23、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解析】

(1)先判断AB与⊙O的位置关系,然后根据等腰三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论