高中三年级一轮复习函数专题-函数的基本性质_第1页
高中三年级一轮复习函数专题-函数的基本性质_第2页
高中三年级一轮复习函数专题-函数的基本性质_第3页
高中三年级一轮复习函数专题-函数的基本性质_第4页
高中三年级一轮复习函数专题-函数的基本性质_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...函数专题1、函数的基本性质复习提问:若何判断两个函数是否属于同一个函数。若何求一个函数的定义域〔特别是抽象函数的定义域问题〕若何求一个函数的解析式。〔常见方法有哪些〕若何求函数的值域。〔常见题型对应的常见方法〕函数单调性的判断,证明和应用〔单调性的应用中参数问题〕函数的对称性〔包括奇偶性〕、周期性的应用利用函数的图像求函数中参数的范围等其他关于图像问题知识分类一、函数的概念:函数的定义含有三个要素,即定义域A、值域C和对应法那么f.当函数的定义域及从定义域到值域的对应法那么确定之后,函数的值域也就随之确定.因此,定义域和对应法那么为函数的两个基本条件,当且仅当两个函数的定义域和对应法那么都分别一样时,这两个函数才是同一个函数.1、试判断以下各组函数是否表示同一函数〔1〕f〔x〕=,g〔x〕=;〔2〕f〔x〕=,g〔x〕=〔3〕f〔x〕=,g〔x〕=〔〕2n-1〔n∈N*〕;〔4〕f〔x〕=,g〔x〕=;〔5〕f〔x〕=x2-2x-1,g〔t〕=t2-2t-1.二、函数的定义域〔请牢记:但凡说定义域范围是多少,都是指等式中变量x的范围〕1、求以下函数的定义域:y=-+1(2)y=(3)(4)y=y=(8)y=〔a为常数〕2、〔1〕f(x)的定义域为[1,2],求f(2x-1)的定义域;〔2〕f(2x-1)的定义域为[1,2],求f(x)的定义域;3、假设函数的定义域为[1,1],求函数的定义域函数的定义域为R,求实数k的取值范围。三、函数的解析式求函数解析式常用的几种方法:待定系数法、换元法〔代换法〕、解方程法、1、换元〔或代换〕法:求.f〔+1〕=x+2,求f(x)的解析式函数,求函数,的解析式。待定系数法函数f〔x〕是一次函数,且满足关系式3f〔x+1〕-2f〔x-1〕=2x+17,求f(x)的解析式是二次函数,且,求的解析式。3、解方程法(1)、函数满足,求〔2〕、函数为偶函数,为奇函数,且+=求、3、函数满足,那么=。4、设是R上的奇函数,且当时,,那么当时=_____在R上的解析式为设与的定义域是,是偶函数,是奇函数,且,求与的解析式四、函数值域的求法1、配方法:对于求二次函数或可转化为形如的函数的值域〔最值〕一类问题,我们常常可以通过配方法来进展求解.例1:求二次函数〔〕的值域.例2:求函数的值域.例3:求函数的最大值与最小值。2、换元法:通过引入一个或多个新变量或代数式代替原来的变量或代数式或超越式,通过换元,我们常常可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式等,这样我们就能将对比复杂的函数转化成易于求值域的函数进展求解.例6:〔整体换元〕,求函数的值域.3、不等式法:例11:求函数〔〕的值域.例14:求函数的值域.7、数形结合法:例29:求函数的值域.例30:求函数的值域。〔答案:题型补充:函数的单调性1.函数单调性的定义:2.证明函数单调性的一般方法:①定义法:设;作差〔一般结果要分解为假设干个因式的乘积,且每一个因式的正或负号能清楚地判断出〕;判断正负号。②用导数证明:假设在某个区间A内有导数,那么在A内为增函数;在A内为减函数。3.求单调区间的方法:定义法、导数法、图象法。4.复合函数在公共定义域上的单调性:①假设f与g的单调性一样,那么为增函数;②假设f与g的单调性相反,那么为减函数。注意:先求定义域,单调区间是定义域的子集。5.一些有用的结论:①奇函数在其对称区间上的单调性一样;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。④函数在上单调递增;在上是单调递减。1、函数在区间为减函数,那么实数的取值范围是〔〕A.B.C.D.2、函数与函数在区间[1,2]上都是减函数,那么实数的取值范围是〔〕A.B.C.D.3.函数是上的减函数,那么实数的取值范围是〔〕A.B.C.D.6、写出函数的单调区间,并指出在相应区间上函数的单调性.9、11、函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.〔1〕如果函数=+〔>0〕的值域为6,+∞,求的值;〔2〕求函数=+(>0)在区间上的最小值;〔3〕研究函数=+〔常数>0〕在定义域内的单调性,并说明理由;〔4〕对函数=+和=+〔常数>0〕作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性〔只须写出结论,不必证明〕.12、.,且。〔1〕设g〔x〕=f[f〔x〕],求g〔x〕的解析式;〔2六、对称性和周期性函数的对称性(1).函数关于直线x=a成轴对称的充要条件是:(与函数的周期性区分开).(2)..函数关于点(a,b)对称的充要条件是:或(3)..与函数关于直线对称的函数解析式为:.(4).与函数关于点〔a,b〕对称的函数解析式为:.函数周期性1.周期函数的定义:对于函数,假设存在一个不为零的常数T,使得的每一个值都有成立,那么称为周期函数,常数T叫做的最小正周期.假设所有的周期中存在一个最小的周期,那么这个最小的正数称为这个函数的最小正周期.2.根据函数的对称性判断函数的周期1.假设,那么函数是周期函数,b-a是它的一个周期。2.假设,那么函数是周期函数,2a是它的一个周期。一、对称性练习1.是奇函数,当时,,求的解析式.2.是偶函数,当时,,求的解析式.3.函数的图象与函数的图象关于原点成中心对称,求的解析式。4.设函数y=f(x)的图象关于直线x=1对称,假设当x<1时,y=x2+1,求当x>1时,,f(x)的解析式.5.设,求关于直线对称的曲线的解析式.6.函数是偶函数,且x∈(0,+∞)时有f(x)=,求当x∈(-∞,-2)时,求的解析式.7.函数是偶函数,当时,又的图象关于直线对称,求在的解析式.定义在上的偶函数满足且当时,.〔1〕求的单调区间;〔2〕求的值.二、周期性练习1、函数对任意实数,都有,那么是以为周期的函数;4、函数对任意实数,都有,那么是以为周期的函数5、函数对任意实数,都有f(x+m)=f(x-m),那么是的一个周期.8.设是定义在〔-∞,+∞〕上的函数,对一切∈R均有,当<1时,求当时,函数的解析式。三、真题模拟1、设是定义在R上的偶函数,对任意,都有且当时,.假设在区间内关于的方程恰有3个不同的实数根,那么实数的取值范围是 A. B. C. D.2、设函数是定义在R上周期为3的奇函数,且,那么3、设为定义在上的奇函数,当时,〔为常数〕,那么4、是以2为周期的偶函数,当时,,且在内,关于的方程〔,〕有四个根,求的取值范围.七、函数零点1.以下函数中在[1,2]上有零点的是〔〕A. B.C. D.2.假设方程在(0,1)内恰有一个实根,那么的取值范围是〔〕A. B. C. D.3.函数,假设,那么在上零点的个数为〔〕A.至多有一个 B.有一个或两个 C.有且只有一个 D.一个也没有4.函数零点所在大致区间是〔〕A.(0,1) B.(1,2) C.(2,3) D.(3,4)5.函数是R上的奇函数,其零点,……,那么=。6.一次函数在[0,1]无零点,那么取值范围为7.函数有两个零点,且都大于2,求的取值范围。判断x3+3x-1=0在〔0,1〕内是否有解。函数仅有一个零点,求实数的取值范围。10.关于的二次方程,假设方程式有两根,其中一根在区间内,另一根在(1,2)内,求的范围。6.解八、函数的图像1.作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值〔甚至变化趋势〕;④描点连线,画出函数的图象。2.三种图象变换:平移变换、对称变换和伸缩变换等等;3.识图:分布范围、变化趋势、对称性、周期性等等方面.4.平移变换:〔1〕水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;〔2〕竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到.①y=f(x)y=f(x+h);②y=f(x)y=f(xh);③y=f(x)y=f(x)+h;④y=f(x)y=f(x)h.5.对称变换:〔1〕函数的图像可以将函数的图像关于轴对称即可得到;〔2〕函数的图像可以将函数的图像关于轴对称即可得到;〔3〕函数的图像可以将函数的图像关于原点对称即可得到;〔4〕函数的图像可以将函数的图像关于直线对称得到.①y=f(x)y=f(x);②y=f(x)y=f(x);③y=f(x)y=f(2ax);④y=f(x)y=f1(x);⑤y=f(x)y=f(x).6.翻折变换:〔1〕函数的图像可以将函数的图像的轴下方局部沿轴翻折到轴上方,去掉原轴下方局部,并保存的轴上方局部即可得到;〔2〕函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边局部并保存在轴右边局部即可得到.7.伸缩变换:〔1〕函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩〔〕为原来的倍得到;〔2〕函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩〔〕为原来的倍得到.①y=f(x)y=f();②y=f(x)y=ωf(x).以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.1、说明由函数的图像经过若何的图像变换得到函数的图像.2.设函数y=f(x)定义在实数集上,那么函数y=f(x1)与y=f(1x)的图象关于〔〕对称A.直线x=0B.直线x=1C.点(0,0)D.点(1,0)3.在以下四个按对应图象关系式画出的略图中,不正确的选项是〔〕A.y=|log2x|B.y=2|x|C.y=log0.5x2D.y=|x1/3|4.函数y=f(x)的图象如图,那么y=f(1x)的图象是〔〕画出以下函数的图象:(1)y=lg|x+1|;(2).说出作出函数y=log2(1x)的图象的过程。方程|x2+2x3|=a(x2)有四个实数根,求实数a的取值范围。8.讨论方程=kx的实数根的个数。9、分别画出以下函数的图像:〔1〕;〔2〕;〔3〕;〔4〕;〔5〕.10、假设函数的图像关于直线对称,求常数的值.是以2为周期的偶函数,当时,,且在内,关于的方程〔,〕有四个根,求的取值范围.12、是定义在上的函数.〔1〕假设是偶函数且周期为2.当时,,求在上的解析式;〔2〕假设是奇函数,.当时,,求在上的解析式.拓展练习:1.设、,定义在区间上的函数的值域是,假设关于的方程〔〕有实数解,那么的取值范围是___

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论