


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
特殊数列求和的常用方法数列求和是数列学习中的一个重点内容,在中学数学的数列学习中,除了要求掌握等差、等比数列前n项求和外,还要能够求一些特殊数列的前n项和,现就特殊数列求和的常用方法归纳如下:一折项求和法将一个数列的每一项折成n项,转化成若干个数列(等差、等比、常数数列等等)求和例①an=n+,求数列{an}的前n项和Sn②求数列2,22,222,2222,…的前n项和Sn解:①Sn=(1+2+3+…+n)+n个②an=22…2=2×11…1=2×n个则Sn=二并项求和法将数列相邻两项(或若干项)合并成一项(或一组)得到一个新的容易求和的数列例2、①求1002-992+982-972+…+22-12的值②求数列1,,,,,,,,,…前100项的和解:①1002-992+982-972+…+22-12=(100+99)(100-99)+(98-97)(98-97)+…+(2+1)(2-1)=(100+99)+(98+97)+…+(2+1)==5050②根据有2项,有3项,有4项,项数和1+2+3+…+14=105,则最后一项为,且有9项,S100=1+(+)+(++)+(+++)+…+(++…+)=1+1+1+1+…+1+9×=13三裂项求和法将数列的每一项裂成两项之差,使得相邻的正负项能相互抵消,剩下项易求和的形式例3、①求的值;②an=,求数列的前n项和Sn解:①由得②an==则Sn=四反序求和法将数列的前后项反序,得一新数列,与原数列对应项相加(仿照等差数列求和公式推导思想)例4、an=,求数列的前2006项和S2006解:由而(1-1003)+(2006-1003)=(2-1003)+(2005-1003)=…=1则+=…=1即a1+a2006=a2+a2005=……=a2006+a1=1,故S2006=a1+a2+a3+…+a2006S2006=a2006+a2005+a2004+…+a1,2S2006=(a1+a2006)+(a2+a2005)+…+(a2006+a1)2S2006=1+1+…+1=2006,即S2006=1003.五错位求和法将一个数列的每一项都作相同的变换,然后得到新的数列,错动一个位置与原数列各项相减(仿照等比数列求和公式推导思想)例5、已知a≠0且a≠1,求数列1,3a,5a2,7a3…(2n-1)an-1前n项和Sn解:由Sn=1+3a+5a2+7a3+…+(2n-1)an-1得aSn=a+3a+5a2+7a3+…+(2n-1)an则(1-a)Sn=1+2a+2a2+2a3+…+2an-1-(2n-1)an由于a≠0且a≠1,则(1-a)Sn=1+2-(2n-1)an故Sn=s六公式求和法除等差、等比数列求和公式外,常用公式有1+2+3+…+n=,12+22+32+…+n2=n(n+1)(2n+1)13+23+33+…+n3=,1+3+5+…+(2n-1)=n2例6、求1·n+22(n-1)+32(n-2)+…+(n-1)2·2+n2·1的和Sn解:ak=k2[n-(k-1)]=k2[(n+1)-k]=(n+1)k2-k3则Sn=(n+1)·12-13+(n+1)·22-23+(n+1)·32-33+…+(n+1)n2-n3=(n+1)(12+23+…+n2)-(13+23+33+…+n3)=(n+1)[n(n+1)(2n+1)]-=七奇偶分析法当数列中的项有符号限制时,应分n为奇数、偶数进行讨论,一般地,先求S2n,再求S2n+1,且S2n+1=S2n+a2n+1例7、若an=(-1)n-1·(4n-3),求Sn解:当n=2k时,Sn=a1+a2+…+an=(1-5)+(9-13)+…+[(4n-7)―(4n―3)]=-4+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人工作总结心得(18篇)
- 2024年盘州市中医医院招收人员笔试真题
- 专科医生调考复习试题及答案
- 四年级语文教学工作总结模板(18篇)
- 优化2025年行政组织理论考试准备的试题与答案
- 行政组织理论与网络治理相结合的研究试题及答案
- 园林建设工程承包施工合同
- 哲学伦理学道德理论应用题
- 四级软件测试工程师职业发展的新机遇试题及答案
- 信息系统监理师考试新课程学习试题及答案
- 粤语试题测试题及答案
- 2025年浙江省金华市义乌市六年级下学期5月模拟预测数学试题含解析
- 高压均质及热处理改性鹰嘴豆蛋白对减磷猪肉糜凝胶特性的影响机制
- 人效提升方案
- 2025春-新版一年级语文下册生字表(200个)
- 期末易错题型创新改编练习(专项练习)六年级下册数学人教版
- 《桥梁工程概况介绍》课件
- 2025年四川成都道德与法制中考试卷(无)
- 中医基础学题库(附答案)
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
- 2024年秋《MySQL数据库应用》形考 实验训练1 在MySQL中创建数据库和表答案
评论
0/150
提交评论