2024年七年级数学寒假提升学与练(沪教版)专题04立方根和开立方、n次方根(2大考点+6种题型)(原卷版)_第1页
2024年七年级数学寒假提升学与练(沪教版)专题04立方根和开立方、n次方根(2大考点+6种题型)(原卷版)_第2页
2024年七年级数学寒假提升学与练(沪教版)专题04立方根和开立方、n次方根(2大考点+6种题型)(原卷版)_第3页
2024年七年级数学寒假提升学与练(沪教版)专题04立方根和开立方、n次方根(2大考点+6种题型)(原卷版)_第4页
2024年七年级数学寒假提升学与练(沪教版)专题04立方根和开立方、n次方根(2大考点+6种题型)(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04立方根和开立方、n次方根(2大考点+6种题型)思维导图核心考点与题型分类聚焦考点一、开立方考点二、开次方题型一:立方根概念理解题型二:求一个数的立方根题型三:已知一个数的立方根,求这个数题型四:立方根的实际应用题型五:算术平方根和立方根的综合应用题型六:n次方根考点一、开立方1、定义:求一个数的立方根的运算叫做开立方.2、如果一个数的立方等于,那么这个数叫做的立方根,用“”表示,读作“三次根号”,中的叫做被开方数,“3”叫做根指数.★注意:任意一个实数都有立方根,而且只有一个立方根;负数有立方根;零的立方根是0;一个数的立方根是它本身,则这个数是0,1和-1.考点二、次方根1、求一个数的次方根的运算叫做开次方.叫做被开方数,叫做根指数.如果一个数的次方(是大于1的整数)等于,那么这个数叫做的次方根.当为奇数时,这个数为的奇次方根;当为偶数时,这个数为的偶次方根.★注意:实数的奇次方根有且只有一个,用“”表示.其中被开方数是任意一个数,根指数是大于1的奇数;正数的偶次方根有两个,它们互为相反数,正次方根用“”表示,负次方根用“”表示.其中被开方数,根指数是正偶数(当时,在中省略);负数的偶次方根不存在;零的次方根等于零,表示为.题型一:立方根概念理解【例1】.(2024下·全国·七年级假期作业)给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是.其中正确的是(

)A.①④ B.①②③C.②③ D.③【变式1】.(2023下·七年级课时练习)下列说法中,错误的是(

)A.8的立方根是±2 B.4的算术平方根是2C.的平方根是±3 D.立方根等于它本身的数是±1,0【变式2】.(2023上·河北沧州·七年级统考期中)如果一个数的立方等于它本身,那么这个数是(

)A.1 B. C.1或 D.1、或0题型二:求一个数的立方根【例2】.(2023上·浙江温州·七年级校联考期中)的立方根是(

)A. B. C. D.【变式1】.(2021下·上海徐汇·七年级校考期中)如果,那么.【变式2】.(2023上·浙江杭州·七年级校考期中)计算:的值等于.【变式3】.(2023下·上海静安·七年级上海市回民中学校考期中)已知是正的平方根,是的立方根,求的立方根的值.【变式4】.(2023下·上海宝山·七年级校考阶段练习)解方程:【变式5】.(2023下·上海宝山·七年级统考期末)计算:.题型三:已知一个数的立方根,求这个数【例3】.(2021下·上海宝山·七年级校考期中)实数a的立方根是,则a=.【变式1】.(2023下·上海·七年级专题练习)4的平方根是;算术平方根是;是的立方根.【变式2】.(2023下·七年级单元测试)已知,则【变式3】.(2023下·上海浦东新·七年级校考期末)如果,那么.【变式4】.(2021下·上海松江·七年级校考期中)解方程:,则.题型四:立方根的实际应用【例4】.(2022下·上海·七年级专题练习)填写下表,并回答问题:a…0.0000010.001110001000000………(1)数a与它的立方根的小数点的移动有何规律?(2)根据这个规律,若已知,求a的值.【变式1】.(2021下·上海浦东新·七年级校考期中)已知一个正方体的棱长是,要再做一个正方体,使它的体积是原正方体的体积的倍,求新做的正方体的棱长.【变式2】.(2022下·上海·七年级专题练习)【阅读材料】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵,,,∴.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.【解答问题】根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2)填空:__________.题型五:算术平方根和立方根的综合应用【例5】.(2021下·上海·七年级校考期中)求值:.【变式1】.(2023下·七年级单元测试)若的算术平方根是7,则的立方根是.【变式2】.(2022上·上海·七年级专题练习)已知4a+7的立方根是3,2a+2b+2的算术平方根是4(1)求a,b的值.(2)求6a+3b的平方根.【变式3】.(2022下·上海·七年级期中)阅读下列解题过程,并按要求填空:已知:=1,=﹣1,求的值.解:根据算术平方根的意义,由=1,得(2x﹣y)2=1,2x﹣y=1第一步根据立方根的意义,由=﹣1,得x﹣2y=﹣1…第二步由①、②,得,解得…第三步把x、y的值分别代入分式中,得=0

…第四步以上解题过程中有两处错误,一处是第步,忽略了;一处是第步,忽略了;正确的结论是(直接写出答案).【变式4】.(2022上·上海·七年级专题练习)观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.题型六:n次方根【例6】.(2022下·上海·七年级专题练习)表示的含义是(

)A.a的正的n次方根 B.a的n次方根C.当时,表示a的正的n次方根 D.当时,且n为奇数时,表示a的n次方根【变式1】.(2022下·上海·七年级专题练习)16的四次方根是(

)A.2 B.-2 C. D.【变式2】.(2022下·上海·七年级专题练习)的6次方根是(

)A.2 B.-2 C. D.【变式3】.(2022下·上海·七年级专题练习)计算:(

)A.8 B.-8 C.2 D.-2【变式4】.(2023下·上海奉贤·七年级校考期中)已知,则实数.【变式5】.(2023下·上海嘉定·七年级校考阶段练习)已知与是同一个正数x的两个不同的平方根.(1)求字母m的值;(2)求x的四次方根.【变式6】.(2022下·上海闵行·七年级上海市七宝中学校考期中)已知,求的n次方根(n为大于1的整数)一、单选题1.(2022下·上海·七年级专题练习)下列运算中,正确的是(

)A.=a﹣b B.C.﹣=a﹣b D.=a+b2.(2022下·上海·七年级专题练习)下列各式正确的是(

)A.=a B.a0=1 C.=-4 D.=-53.(2022下·上海·七年级专题练习)如果,那么y=(

)A.3 B.-3 C. D.4.(2023上·浙江温州·七年级校考期中)的立方根是(

)A. B.3 C. D.5.(2023上·浙江宁波·七年级宁波市第七中学校考期中)如图为洪涛同学的小测卷,他的得分应是(

)A.25分 B.50分 C.75分 D.100分6.(2023上·山东济南·七年级校考阶段练习)若,则的值为(

)A. B.0 C.或2 D.或二、填空题7.(2023上·黑龙江绥化·七年级校考期中)若一个数的算术平方根和立方根都等于它本身,则这个数一定是.8.(2024下·全国·七年级假期作业)如果是的算术平方根,是的立方根,那么.9.(2023上·浙江绍兴·七年级校联考期中)已知一个正方体的体积是1000,现在要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积488,则截去的每小正方体的棱长是cm.10.(2023上·浙江绍兴·七年级新昌县七星中学校考期中)已知一个正数的两个平方根分别是和,则a的立方根是.11.(2023上·浙江温州·七年级校考期中)若,则.12.(2023上·浙江杭州·七年级统考期中)如果x是9的平方根,y是的立方根,则.13.(2023上·黑龙江哈尔滨·七年级哈尔滨市第四十七中学校考阶段练习)已知,的立方根.14.(2023上·浙江嘉兴·七年级校联考阶段练习)已知的立方根是3,的算术平方根是4.则,.15.(2023上·山东淄博·七年级淄博市淄川实验中学校考阶段练习)的立方根是,的平方根是.16.(2024下·全国·七年级假期作业)已知的平方根是,且4,则的值为.17.(2023下·七年级课时练习)对于实数a,b,定义min{a,b}的含义为:当a<b时,min{a,b}=a.例如:min{1,-2}=-2.已知,,且a和b为两个连续正整数,则a-2b的立方根为.18.计算:.三、解答题19.(2023下·七年级课时练习)求下列各式的值:(1);(2);(3).20.(2023下·辽宁营口·七年级统考期中)求x的值:(1);(2).21.(2024下·全国·七年级假期作业)已知与互为相反数,求的立方根.22.(2023下·七年级课时练习)已知是m+3的算术平方根,B=是n-2的立方根,求A,B的值.23.(2023下·七年级课时练习)如果是a-3b的算术平方根,是的立方根,求2a-3b的立方根.24.(2024下·全国·七年级假期作业)(1)已知的平方根是,的平方根是,求的平方根;(2)已知a,b都是有理数,且,求的平方根.25.(2023上·黑龙江哈尔滨·七年级校联考期中)阅读与探究本学期我们在《实数》中,学习了平方根和立方根,下表是平方根和立方根的部分内容.平方根立方根定义一般地,如果一个数的平方等于,那么这个数叫做的平方根或二次方根.这就是说,如果,那么x叫做的平方根.一般地,如果一个数的立方等于,那么这个数叫做的立方根或三次方根这就是说,如果,那么叫做的立方根.运算求一个数的平方根的运算,叫做开平方.开平方与平方互为逆运算.求一个数的立方根的运算,叫做开立方.开立方与立方互为逆运算.性质正数有两个平方根,他们互为相反数;的平方根是;负数没有平方根.正数的立方根是正数;的立方根是;负数的立方根是负数.表示方法正数的平方根可以用“”表示,读作“正负根号”一个数的立方根可以用“”表示,读作“三次根号”.今天我们类比平方根和立方根的学习方法学习四次方根.(1)探究定义:类比平方根和立方根的定义,给四次方根下定义:.(2)探究性质:①的四次方根是;的四次方根是;(填“有”或“没有”)四次方根.②类比平方根和立方根的性质,归纳四次方根的性质:.26.(2024下·全国·七年级假期作业)七年级数学兴趣小组在学校的“数学长廊”中展示了他们小组探究发现的结果,内容如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论