版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《相似三角形性质》教学反思《相似三角形性质》教学反思「篇一」在两角对应相等两个三角形相似的基础上,本节课又学习了两个定理,由于这些定理与三角形全等时所学的类似,所以学生学习起来并不困难。一开始,我就在黑板上板书了三个定理的内容与几何语言,让学生类比全等三角形的判定,再结合图形进行了理解。接着处理了学案上的内容,预习检测的内容刚好是对这两个新的判定方法的一个应用。然后将基础训练上的一个题作为当堂训练的题目,请学生限时解答,找两名学生上黑板做,题目虽说简单,但学生对新判定方法的应用还是掌握不恰当,在讲评时给学生进行了归纳:1、当题目中告诉角之间的相等关系时,或线段的平行关系时,常常选择两角对应相等的两个三角形相似这一判定方法。2、当题目中告诉线段的长度较多,或含有成比例线段的图形时,常选择三边对应成比例的两个三角形相似这一判定方法。3、当题目中既有角之间的关系,又有线段之间的比例关系时易采用两边对应成比例且夹角相等的两个三角形相似这一判定方法。所以遇到有关三角形相似的问题时,要充分考虑题目中给出的已知条件,有针对的选择判定方法,会起到事半功倍的效果。本节课中有一个疑惑,那就是在本节课的开始有的三个问题,让学生动手操作实践,从而得出两个判定定理,我觉得,这里没有学习的平行公理,也没有学习了平行线等分线段定理,平行线分线段成比例定理,所以在理论上无法通过三边对应成比例的两个三角形相似,即使推出来,也让学生半天理解不透,所以,我回避了这个问题,直接类比全等得到了两个判定方法,这样做学生只会用定理进行判定,但不知道为什么,只其然,但不知其所以然。在这里,还真的需要好好思考一下如何处理这一点内容比较合适呢。《相似三角形性质》教学反思「篇二」本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。先通过对实物图形的放大与缩小的直观认识逐步形成相似形的概念,先定性描述再揭示其本质特征由于图形的相似与比例线段密不可分,因此在形成相似形的概念之后,安排学习比例线段,进而讨论三角形一边的平行线的性质与判定以及平行线分线段成比例定理。为研究相似三角形提供了必要的知识准备。而后给出相似三角形的定义,说明了有关概念,明确了相似三角形的符号表示和相似比的意义然后,通过对三角形一边的平行线问题的进一步思考,得到相似三角形的预备定义然通过对判定全等三角形所需条件进行分析,类比全等三角形的判定方法,提出了关于相似三角形判定的四个问题;通过对四个问题的探究,得到三个一般三角形相似的判定定理和一个直角三角形相似的判定定理。上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。在学习判定时就有了一些判定与性质综合运用的题目,学生感到有一定的难度,所以只实际应用时,尽量开阔学生的思维方法。一节几何课,如果只是简单的出示定理、证明定理、讲例题、做练习,学生被动的听讲、单纯地记忆、模仿地做练习,这样不利于培养学生的创造性思维,而且影响学生数学能力的提高。如果时常诱导学生积极探索、思考,达到既能掌握知识,又能提高能力,才能使学生学会学习。在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。《相似三角形性质》教学反思「篇三」我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,猜完后,我又重点对三角形中的中线、角平分线、高线、周长、面积在相似三角形中与相似比的关系进行了讲解。书中没有完整推导过程,一开始让学生来验证结论的正确性时,学生有点困难,后来在我的引导下完成了相似三角形对应高的比等于相似比后,其它的也依次推理出来了,至于在讲对面积比与相似三角形相似比的关系时,利用面积公式以及对应高的比等于相似比后,最终得出等于相似比的平方。然后又讲了这几者在相似三角形中的关系,只要知道其中一组的比就能知道其它比,而且学生对相似三角形面积的比等于相似比的平方印象非常深刻。最后,讲了一些经典例题,整个过程学生理解、接受能力都比较好。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。《相似三角形性质》教学反思「篇四」本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。《相似三角形性质》教学反思「篇五」《相似三角形的性质》是北师大版九年级上册第四章第七小节内容。本节课的教学重点是探索相似三角形的性质并能用相似三角形的性质解决简单的实际问题。实际上就是在了解相似三角形基本性质和判定方法的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。这节课我以合作探究的形式展开,让学生探究发现结论,体验成功的乐趣,培养学生探究问题的科学态度,促进创造性思维的发展。通过学生独立思考、小组交流、学生展示、师生共评等环节,让学生在学习探究中,体会、理解、掌握相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比。并通过教师设问,学生大胆猜想,分组交流讨论,类比得出相似三角形对应线段的比等于相似比这一结论。在此基础上,让学生趁热打铁,适时训练,在“我来抢答”环节中,设置了不同层次的问题,以使不同层次的同学都能获得应用知识的快乐,激发学生的学习热情,特别是练习第3题,涉及到了分类讨论的思想,使学生在学习的同时渗透数学的思想与方法,为学生的终身学习打下基础。学以致用环节中,我对教材稍作处理,所增添的题为后面二次函数的学习做好铺垫,在作业的设计上体现了分层布置,同时课外作业主要是为了拓展学生的思维,提高学生思考问题、分析问题、解决问题的能力,同时进一步体会分类讨论的数学思想。本节课总体上学生的学习积极性高,参与率高,而且学生能做到在自己独立思考的基础上,与同伴交流互动,大胆发言,小结部分也能对照目标进行自查。但是在今后教学中,特别是在学生活动中,教师还是应该给学生稍微留出相对宽松的时间和空间,多让学生去展示,学会去放手,让学生自身在经历中成长,在交流中获知和进步。《相似三角形性质》教学反思「篇六」《相似三角形的性质(1)》是几何内容,数形结合比较多。于是我借助于多媒体教学制作了课件,节约板书的作图时间。本节课先复习相似三角形的基本性质,即相似三角形的对应角相等,对应边成比例。通过从三个边长分别为1,2,3的等边三角形入手引导学生思考:相似三角形的周长比、面积比与相似比之间有什么关系?学生进行了大胆猜想:“相似三角形周长比等于相似比,面积比等于相似比的平方”。接下来进行逻辑推理,并让学生自己尝试类推相似多边形周长比、面积比与相似比的关系。最后指导学生运用这两个性质解决实际问题,效果非常好。这节课让我感触很多:在已有知识的基础上用类比化归的思想去探究新知,让学生充分体会数学知识之间的内在联系,以此激发学生的学习兴趣,通过教师的点拨引导,学生积极开展小组合作学习,交流探索新知,并且在不断探索中学会创造性学习由问题发散出新问题,培养学生的探索和创新能力。学生在得出相似三角形周长比等于相似比后,就及时提出由相似比如何求面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试验园区协议书
- 2025福建厦门市集美区幸福幼儿园招聘2人考试核心试题及答案解析
- 打印精美合同范本
- 干调采购合同范本
- 康复机构协议书
- 小学禁毒协议书
- 内勤聘用合同范本
- 物流销售合同范本
- 2025重庆开州区事业单位定向考核招聘30人参考笔试题库附答案解析
- 训练指导协议书
- 生活自理能力幼儿园培训
- 麦当劳管理手册
- 【MOOC】线性代数典型习题讲解-北京化工大学 中国大学慕课MOOC答案
- 华中农业大学《数学分析》2021-2022学年第一学期期末试卷
- 大学体育-瑜伽学习通超星期末考试答案章节答案2024年
- 厦门大学介绍
- 0-6岁儿童健康管理规范课件
- 分享五年级语文英才教程电子版
- 超星尔雅学习通《文献信息检索与利用(成都航空职业技术学院)》2024章节测试答案
- 21 小圣施威降大圣
- DL-T 2582.1-2022 水电站公用辅助设备运行规程 第1部分:油系统
评论
0/150
提交评论