下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE4PAGE5高考真题(2024•全国III卷(理))已知函数.(1)探讨的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的全部值;若不存在,说明理由.【解析】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,,与冲突,所以不成立.若,区间上单调递增;在区间.所以,代入解得.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,解得,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.所以有区间上单调递减,所以区间上最大值为,最小值为即解得.综上得或.【答案】(1)见详解;(2)或.(2024•天津卷(理))已知,设函数若关于的不等式在上恒成立,则的取值范围为()A.B.C.D.【解析】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.【答案】C(2024•浙江卷)已知实数,设函数(1)当时,求函数的单调区间;(2)对随意均有求的取值范围.注:为自然对数的底数.【解析】(1)当时,,函数的定义域为,且:,因此函数的单调递增区间是,单调递减区间是.(2)由,得,当时,,等价于,令,则,设,,则,(i)当时,,则,记,则列表探讨:x()1(1,+∞)p′(x)﹣0+P(x)p()单调递减微小值p(1)单调递增(ii)当时,,令,则,故在上单调递增,,由(i)得,,由(i)(ii)知对随意,即对随意,均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理审美意识与护理质量
- 护理常见问题与老年护理
- 广西壮族自治区钦州市大寺中学2025-2026学年高三上学期11月考试历史试卷(含答案)
- 护理:护理服务的持续改进机制
- 护理安全事件原因剖析
- 急救护理中的急救护理教育
- 护理礼仪与护理服务
- 护理课件模板素材下载站
- 车款收款协议书
- 教育意向协议书
- 2025天津大学管理岗位集中招聘15人参考笔试试题及答案解析
- HXD3D机车总体介绍
- 教科版广州小学英语四年级上册 Module 7 单元测试卷含答案
- 2023年印江县人民医院紧缺医学专业人才招聘考试历年高频考点试题含答案解析
- 基于逻辑经验主义对命题的分析
- 安全通道防护棚计算书
- 中文介绍迈克尔杰克逊
- 安徽绿沃循环能源科技有限公司12000t-a锂离子电池高值资源化回收利用项目(重新报批)环境影响报告书
- 厦深铁路福建段某标段工程投标施工组织设计
- 《汽车电器故障问题研究4600字(论文)》
- EN462全套中文版本欧标像质计
评论
0/150
提交评论