




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GenerativeAIandCybersecurity:
Arevisitedclassic
ThegreatestriskswhenincorporatinggenerativeAIintoabusinessstructureare:
Misleadingoutcomesduetomodelhallucination
Dataleakageandcopyrightissuesduetounintentionaldisseminationorinclusionofregulatedor
company-confidentialdata
Trainingdata–subjects’privacyandconsentviolationswith
Modelcorruptionandabusewhenretrainingisbasedoncustomerresponsedata
AI
inadequateneed-to-knowandneed-to-useintrainingdataanddataoutputsmanagement
MeetingregulatoryandethicalresponsibilitiesinGenAIuse
Ethicalissuesorbiased
conclusionsbecauseofinaccurate,
incomplete,ortamperedtrainingdata
Thebiggest
risksaretodata
WhendesigningforsecuregenerativeAI,datariskstakepriority.Broadlyspeaking,theserisksoriginatefromthreeactivities:
Theexposureofconfidentialand/orregulatedinformation
Inaccurateinformationdisruptsprocesses,whetherdecisionaloroperational
GenAIfollowsafamiliarpatternforadoptionandcybersecurity,
promptingquestionsreminiscentofthosethataccompaniedthe
earlydaysofcloudcomputing.TherapidriseofgenerativeAI
presentsorganizationswiththeusualinnovationdilemma:isit
bettertoadoptacautiousandrestrictiveapproach,riskingmissingoutonopportunities,ortograntmorefreedom,attheriskof
exposingthemselvestonewrisks?
PotentialreputationaldamageiscausedwhenGenAItoolsareusedaschatbotsservingasinterfacesbetweencustomersandanorganization
Theseriskshavecommonthemesofidentifying,scrubbing,andprotectingtherightdataatthe
righttimeandputtingtherightguardrailsinplacearoundaGenAIsolution.Despiteitspotentialandtheexcitementsurroundingit,GenAIisultimatelyanotherenterprisetool:itrequirestheapplicationandadaptationofpolicies,controlsandmeasures
implementedatenterpriselevelandwithintheAIecosystem.Itbringschallengesofoperatingmodelsinternallyandmonitoringtheirinputandoutputcompliantly.
InaGenAIsystem,foundationalsecuritymustbedoneacrossfourdimensions:
.Framework,governance,andriskmanagement
.Dataandidentitysecurity
.TrustedGenAImodelsandtheiroutcomes
.Infrastructureandapplicationmonitoringanddelivery
ThreatmodelsareavailablefromNIST,MITRE,
Microsoft,Google,andothersintheindustrytobuildfasterandbereadyfornewrisks.
AGenAIsystemcanhavedifferentsecurityscopes.Usingcloudserviceproviders(CSP)asexamples,eachCSP(alsoknownashyperscalers)offersgenerative
AIsystemswithverydifferentsecurityscopes,
andeachproviderdefinesthisscopedifferently.
ConsidersharedresponsibilityaroundthereferencearchitecturefoundinFigure1.
2|GenerativeAI&Cybersecurity
GenerativeAI&Cybersecurity|3
Data
Datacollection,datapreparationandtransformation
Varioususecasesthatmatterstotheendusersandarerelevantbusinesscases
modelsthataretailoredtoagivenindustryorusecaseToolstooperationalizeGen-AImodels
Gen-AIapplicationssuchascompute,networkandstorage
Applications
SoftwareapplicationsthatprimarilyuseGen-AImodelstoperformatask
Monitoring&Maintain
Monitorperformance,userexperienceandoutcomequality
Models&Tools
Gen-AIfoundationmodels&domainspecific
Infrastructure
Infrastructurecomponentsusedtobuildout
Network
Communication
Storage
Compute
Figure1:ConceptualreferencearchitectureforGenAIsharedresponsibility.
AmazonWebServicesfocusesonprovidingthe
infrastructureforgenerativeAImodels,aswith
AmazonBedrock.Variousdegreesofcustomizationandownershiparepossible.Theclient’ssystemis
definedastheprovidedinfrastructure,andtheirpartofsharedresponsibilityincludesthesecurityofthemodels,data,andapplications.
GoogleCloudPlatform’s(GCP)approachfocusesontheinfrastructureandmodels,offeringVertexAIandtheModelGardentoempowercustomers.Customers
focusontheapplicationlayer,monitoring,andtheGenAIinterface,whileGCPhassharedresponsibilityfromthemodeldowntodataandinfrastructure.
WithMicrosoftAzure’sCo-pilot,theCSPtakes
ownershipofinfrastructure,model,application,and
everythinginbetween..Thecustomerfocusesondatasecurityandbusinesspurposes.Datainterfacesdefinetheirsystem,whilethemodels,infrastructure,and
applicationinterfacearetreatedmoreasblackboxes.
4|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|5
Establishing
asecurity
frameworkwithgovernance
PositionsonhowtoregulateGenAIvarywidely,
fromoutrightprohibitiontocompletelaissez-faire.Nosinglegovernmentorsupranationalpolitical
entitywillbeabletodictatehowGenAIproliferates.Nevertheless,enterprisesmustworkwithinlegal
andregulatorystructuresbasedontheirclients,geographies,andethics.
Toanticipatewhat’sexpectedingenerativeAIgovernance,enterprisesshouldconsiderthefollowing:
.ExistingandupcomingregulationsthatwillinfluenceAIuse
.Anenterprise’suniquerisktolerancesfortechnologyandregulations
.TeammembereducationonhowGenAIworks,itsinherentproblems,andriskssuchasdataleaksandtheorganization’sownpolicies
.AsecureGenAIreferencearchitecturedescribinghowtomanagerisks
Thereferencearchitecturemustaddresstherisksofvariousmodelsindiverseways.Afullproprietarysolution,includingGenAImodeldevelopmentandpre-training,meansanorganizationwillhavethe
abilityandobligationtoaddressitsspecificrisksend-to-end.
InthecaseofSoftware-as-a-ServicegenerativeAI,manyrisksneedtobeaddressedthroughcontractandthird-andfourth-partyriskmanagement.
OrganizationscanalsodeploymorethanoneGenAIsolutionwithdifferentarchitecturemodels,andhybridmodels.
Governancebodies-suchasaGenerativeAICenterofExcellence-areneededinenterprisestohelpshape
thesecureadoptionofGenAI.Theyhelpaccelerate
low-risk,high-impactbusinessexperimentswhile
enforcingappropriateoversightofhigh-riskplans.Bydevelopingrepeatable,enforceable,anddisseminatedguidelines,enterprisescanleverageGenAIsolutionsmorequicklyandsecurely.
Providerassumedresponsibility
SaaS
ExternalModel
PaaS
IaaS
Applications
Monitoring&Maintain
Models&Tools
Data
Infrastructure
M
Network
Communication
Storage
Compute
Figure2:SharedresponsibilitymodelsforvariouscloudproviderGenAIdeliverymodels
6|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|7
SecuringData
GenAIlackshumanfilterswhenitproducesdata:themachinesearchesthrougheverythingitcanaccess
andthenreproducesthisknowledgewithcompletecandorregardlessofsensitivity.Itis,therefore,
imperativetosetlimits.Todothis,enterprisesmust
inventorytheirdata:classifyit;implementcontrolsforquality,representativeness,integrity,andaccess;andcreaterepositoriesofauthorizeddataforGenAIapplications.
GenAI’sconsumptionofdatamakesdata
classificationevenmoreessentialtoadequately
protectanenterpriseandcustomers.Classification
allowstightercontrolofdatausedtotrain,specialize,andrefinemodels.Accesstoitsoutputcanbe
restrictedanddataleakprotectiontoolscanbe
implemented;oraresponsecanbelimitedusingasubsetofdatabasedonaright-to-knowrule.
Withathird-partyLLM,thereislimitedabilityto
build“native”guardrailsaroundinputsandoutputs.Likewise,theabilitytoimplementguardrailsinsidethelearningphasesofaGenerativeAdversarial
Network1islimitedwhenusingclosedmodelsinan
Data
1.Training
Themodelisbuiltwhich
encodestherealtionships,
patternsandsequences
withintrainingdataand
modelvalidationdata.
●
TrainedModel
●
3.EnsuringCorrectness
Thereisnoguranteeofreal-worldcorrectnessfromagenerativeAImodels,anditsometimes
hallucinatesfictionalresponse
2.Generation
Thetrainedmodelcanthengeneratenewoutputsliketheoriginaldataitwastrainedon
(Optional)
FineTuning
Thegenericfoundation
modelmightbefine-tuned
togiveitexposuretoa
specialistarea.
(Optional)Alignment
Modelmightbetweaked
toaligninmorewith
expectedhumanresponse
Figure3:DatalifecycleinsideagenerativeAIapplication
application.Itiscriticaltoconsiderwhetherdata
canbeinspectedandvalidated,andwhetherits
inputsandoutputscanbeobservedwhenchoosingcomponentsofasystem.
Amodel’soutputmustbesubjecttoverification
todetecthallucinations,maliciousreinforcement,
ordriftsfromexpectedbehaviorovertime.When
usingreal-timemodeloutput,suchaswithachatbot,theobservabilityofpastperformancetopreempt
unacceptableresponsesisimportant.Akeypointis
tounderstandthedatalifecycleanditssensitivity,ascapturedinFigure3.Datasecurityrequirementscanchangeoveritslifecycle,dependingonitsproximityto,orcominglingwithotherdata.
SuccessfullysecuringGenAIsolutionsisamulti-
disciplineapproachthatrequirespartnerships
betweencybersecurity,datagovernance,data
science,andlegalandcompliance,sincedisciplineddatamanagementisattheheartofachievingGenAIdatasecurity.
Dependencies
Data
Governance
Data
Sciences
Security
Legal&Compliance
Figure4:Multi-disciplineinteractionsnecessaryforGenAIsuccess
8|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|9
TrustedGen
AImodelsandtheiroutcomes
Itmaynotbepossibletogainaccesstoandthen
validatealldatasetsusedduringthelifecycleof
aGenAIsolution.Amodelsuchasthecommonly
usedLargeLanguageModel(LLM),multi-model
models,andtransformer-basedmodelsgeneratingoutcomesthroughuserpromptorAPIrequestscanfallintooneofthefollowingmodelcategories:
.Developedandinitiallytrainedbyanexternal
party(OpenAI’sChatGPT,forinstance)andused“asis”bytheenterprise
.Developedandinitiallytrainedbyanexternal
party,thenspecializedbytheenterprisetoa
specificdomain(i.e.,specialism)withanewdatasettoaddressspecificusecases
.DevelopedandtrainedbytheenterpriseentirelySupplychainsecurityandthird/fourth-partyrisk
managementarecrucialforthefirsttwocategories.
Itisevenmoreimportanttointegratesecuritycontrolssuchasmodelauditability,dataleakageprevention,hallucinationandbiasdetection(i.e.guardrails)intotheapplicationdevelopment
pipeline.
Dataquality
Therecurrentuseandprovenanceoftrainingdataisafocalpointwhenusingexternallysourcedmodels.Itscomposition,howoftenitchanges,andhowrecursionbetweencustomerprompt/responsepairingsand
reinforcementtrainingofthemodeloccursshouldbeclear.
Whendevelopingandtrainingaproprietarymodel(thirdcategoryabove),someriskscanbeamplifiedwhileothersaremitigated.Theneedtounderstanddata’sprovenanceandclassificationoftrainingdatawhilealsotestingforbiasandderogatoryresponsesfallsontheenterprise,eventhoughthosecanbe
differentdisciplines.Atthesametime,therisks
ofrecursivetrainingfromprompt/responsepairsarereducedastheinformationdoesn’tleavethelocalmodel.
Forallmodels,organizationsmustapplytheirownadditional,adaptablecontrols,suchas:
.Specificsecuritymonitoringrules
.Completelyoriginalmeasures,suchascontrolstodetectspecificnewattacksoruserbehaviors.
.Formultiandhybridarchitectures,APIsecurityandCI/CDsecure-by-designdomains
Thekeytoassuranceofdata’sintegrityisdue
diligenceonaprovider’ssecurity,privacycontrols,andcompliance.Theircommitmentsandresponsibilities
shouldbeclearlydefinedinanycontract.
10|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|11
Application
and
infrastructuremonitoring
anddelivery
ThefinalaspectofsecurityforGenAIisprotecting
applicationsfrombeingrenderedinoperativeor
unavailable.Thisrequiresdeployingsecuritycontrolswithinapplicationsandinfrastructure,covering
compute,endpoint,network,andstorage.
Thesamesecurityandcompliancehygieneappliedtoclassicsecuritymustbeappliedhere,especiallythosehandlingsensitivedata.Corporatesecurity
policiesandmandatorysecuritycontrolsovertheselayersareasimportantasever.
GenAIapplicationswillrequiresomenewsecuritycontrols,suchaspromptanalysis,andadaptationto
existingsecuritycontrols,suchasedgeprotection,tobeeffective.Buildingadequate,automated
governancearounddataclassificationandusageshouldbepartofanysecurityroadmap.
SoftwaresupplychainmanagementismoreimportantingenerativeAIapplicationdevelopment,e.g.,for
pinningdependencyversionsinmodeldevelopmenttoensuretrainingrunsdonotbecomecorrupted.Thisisimportantformonitoringanddeliverysinceitisa
partofthesoftwaredeliverylifecycle.Continuous
Integration(CI)andcontinuousdelivery(CD)throughaDevSecOpspipelineforapplicationdevelopment
canbeusedtosecuremodeldevelopment.Red
teaming2,anapplicationtotestforvulnerabilities,shouldincludetestingofanyprompts.Thisaimstostopmalicioususersfrom:
.Corruptingorrecoveringtrainingdata
.Manipulatingresultsforotherusers
.Performingdenialofserviceattacks
.Exfiltratingdata
AsgenerativeAIevolves,securityfunctionsnativetoGenAIwilltoo,aswilltheircapabilitiestointegratewithexternalsecuritysolutions.
12|GenerativeA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合同具备哪些法律特征项目
- 2025年网络规划设计师考试知识思路试题及答案
- 美国保镖应聘测试题及答案
- 中级社会工作者的职业态度试题及答案
- 提升中级社会工作者考试能力的试题及答案
- 如何防范2025年合同中的装修漏洞
- 检验三基试题及答案
- 2025汽车租赁,车辆租赁定金合同范本
- 青协社团笔试题目及答案
- 医疗e类试题及答案文档
- 早自习迟到检讨书综合(总结19篇)
- 中考语文试卷名著阅读专题汇编《艾青诗选》诗歌赏析题(截至2024年)
- 塑料零件的快速换模技术考核试卷
- 足疗技师2025年度买钟外出安全协议细则
- 大学生创业基础知到智慧树章节测试课后答案2024年秋湖北工业大学
- 人教版七年级生物下册第四单元测试题及答案
- 硫酸的安全培训
- 《化工过程本质安全化评估技术指南》
- 外国教育史知到智慧树章节测试课后答案2024年秋山东师范大学
- 幼儿教师信息素养养成(运城幼儿师范高等专科学校)知到智慧树答案
- 女孩青春期生理健康教育
评论
0/150
提交评论