Capgemini-生成式人工智能与网络安全:经典之作(英)_第1页
Capgemini-生成式人工智能与网络安全:经典之作(英)_第2页
Capgemini-生成式人工智能与网络安全:经典之作(英)_第3页
Capgemini-生成式人工智能与网络安全:经典之作(英)_第4页
Capgemini-生成式人工智能与网络安全:经典之作(英)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GenerativeAIandCybersecurity:

Arevisitedclassic

ThegreatestriskswhenincorporatinggenerativeAIintoabusinessstructureare:

Misleadingoutcomesduetomodelhallucination

Dataleakageandcopyrightissuesduetounintentionaldisseminationorinclusionofregulatedor

company-confidentialdata

Trainingdata–subjects’privacyandconsentviolationswith

Modelcorruptionandabusewhenretrainingisbasedoncustomerresponsedata

AI

inadequateneed-to-knowandneed-to-useintrainingdataanddataoutputsmanagement

MeetingregulatoryandethicalresponsibilitiesinGenAIuse

Ethicalissuesorbiased

conclusionsbecauseofinaccurate,

incomplete,ortamperedtrainingdata

Thebiggest

risksaretodata

WhendesigningforsecuregenerativeAI,datariskstakepriority.Broadlyspeaking,theserisksoriginatefromthreeactivities:

Theexposureofconfidentialand/orregulatedinformation

Inaccurateinformationdisruptsprocesses,whetherdecisionaloroperational

GenAIfollowsafamiliarpatternforadoptionandcybersecurity,

promptingquestionsreminiscentofthosethataccompaniedthe

earlydaysofcloudcomputing.TherapidriseofgenerativeAI

presentsorganizationswiththeusualinnovationdilemma:isit

bettertoadoptacautiousandrestrictiveapproach,riskingmissingoutonopportunities,ortograntmorefreedom,attheriskof

exposingthemselvestonewrisks?

PotentialreputationaldamageiscausedwhenGenAItoolsareusedaschatbotsservingasinterfacesbetweencustomersandanorganization

Theseriskshavecommonthemesofidentifying,scrubbing,andprotectingtherightdataatthe

righttimeandputtingtherightguardrailsinplacearoundaGenAIsolution.Despiteitspotentialandtheexcitementsurroundingit,GenAIisultimatelyanotherenterprisetool:itrequirestheapplicationandadaptationofpolicies,controlsandmeasures

implementedatenterpriselevelandwithintheAIecosystem.Itbringschallengesofoperatingmodelsinternallyandmonitoringtheirinputandoutputcompliantly.

InaGenAIsystem,foundationalsecuritymustbedoneacrossfourdimensions:

.Framework,governance,andriskmanagement

.Dataandidentitysecurity

.TrustedGenAImodelsandtheiroutcomes

.Infrastructureandapplicationmonitoringanddelivery

ThreatmodelsareavailablefromNIST,MITRE,

Microsoft,Google,andothersintheindustrytobuildfasterandbereadyfornewrisks.

AGenAIsystemcanhavedifferentsecurityscopes.Usingcloudserviceproviders(CSP)asexamples,eachCSP(alsoknownashyperscalers)offersgenerative

AIsystemswithverydifferentsecurityscopes,

andeachproviderdefinesthisscopedifferently.

ConsidersharedresponsibilityaroundthereferencearchitecturefoundinFigure1.

2|GenerativeAI&Cybersecurity

GenerativeAI&Cybersecurity|3

Data

Datacollection,datapreparationandtransformation

Varioususecasesthatmatterstotheendusersandarerelevantbusinesscases

modelsthataretailoredtoagivenindustryorusecaseToolstooperationalizeGen-AImodels

Gen-AIapplicationssuchascompute,networkandstorage

Applications

SoftwareapplicationsthatprimarilyuseGen-AImodelstoperformatask

Monitoring&Maintain

Monitorperformance,userexperienceandoutcomequality

Models&Tools

Gen-AIfoundationmodels&domainspecific

Infrastructure

Infrastructurecomponentsusedtobuildout

Network

Communication

Storage

Compute

Figure1:ConceptualreferencearchitectureforGenAIsharedresponsibility.

AmazonWebServicesfocusesonprovidingthe

infrastructureforgenerativeAImodels,aswith

AmazonBedrock.Variousdegreesofcustomizationandownershiparepossible.Theclient’ssystemis

definedastheprovidedinfrastructure,andtheirpartofsharedresponsibilityincludesthesecurityofthemodels,data,andapplications.

GoogleCloudPlatform’s(GCP)approachfocusesontheinfrastructureandmodels,offeringVertexAIandtheModelGardentoempowercustomers.Customers

focusontheapplicationlayer,monitoring,andtheGenAIinterface,whileGCPhassharedresponsibilityfromthemodeldowntodataandinfrastructure.

WithMicrosoftAzure’sCo-pilot,theCSPtakes

ownershipofinfrastructure,model,application,and

everythinginbetween..Thecustomerfocusesondatasecurityandbusinesspurposes.Datainterfacesdefinetheirsystem,whilethemodels,infrastructure,and

applicationinterfacearetreatedmoreasblackboxes.

4|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|5

Establishing

asecurity

frameworkwithgovernance

PositionsonhowtoregulateGenAIvarywidely,

fromoutrightprohibitiontocompletelaissez-faire.Nosinglegovernmentorsupranationalpolitical

entitywillbeabletodictatehowGenAIproliferates.Nevertheless,enterprisesmustworkwithinlegal

andregulatorystructuresbasedontheirclients,geographies,andethics.

Toanticipatewhat’sexpectedingenerativeAIgovernance,enterprisesshouldconsiderthefollowing:

.ExistingandupcomingregulationsthatwillinfluenceAIuse

.Anenterprise’suniquerisktolerancesfortechnologyandregulations

.TeammembereducationonhowGenAIworks,itsinherentproblems,andriskssuchasdataleaksandtheorganization’sownpolicies

.AsecureGenAIreferencearchitecturedescribinghowtomanagerisks

Thereferencearchitecturemustaddresstherisksofvariousmodelsindiverseways.Afullproprietarysolution,includingGenAImodeldevelopmentandpre-training,meansanorganizationwillhavethe

abilityandobligationtoaddressitsspecificrisksend-to-end.

InthecaseofSoftware-as-a-ServicegenerativeAI,manyrisksneedtobeaddressedthroughcontractandthird-andfourth-partyriskmanagement.

OrganizationscanalsodeploymorethanoneGenAIsolutionwithdifferentarchitecturemodels,andhybridmodels.

Governancebodies-suchasaGenerativeAICenterofExcellence-areneededinenterprisestohelpshape

thesecureadoptionofGenAI.Theyhelpaccelerate

low-risk,high-impactbusinessexperimentswhile

enforcingappropriateoversightofhigh-riskplans.Bydevelopingrepeatable,enforceable,anddisseminatedguidelines,enterprisescanleverageGenAIsolutionsmorequicklyandsecurely.

Providerassumedresponsibility

SaaS

ExternalModel

PaaS

IaaS

Applications

Monitoring&Maintain

Models&Tools

Data

Infrastructure

M

Network

Communication

Storage

Compute

Figure2:SharedresponsibilitymodelsforvariouscloudproviderGenAIdeliverymodels

6|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|7

SecuringData

GenAIlackshumanfilterswhenitproducesdata:themachinesearchesthrougheverythingitcanaccess

andthenreproducesthisknowledgewithcompletecandorregardlessofsensitivity.Itis,therefore,

imperativetosetlimits.Todothis,enterprisesmust

inventorytheirdata:classifyit;implementcontrolsforquality,representativeness,integrity,andaccess;andcreaterepositoriesofauthorizeddataforGenAIapplications.

GenAI’sconsumptionofdatamakesdata

classificationevenmoreessentialtoadequately

protectanenterpriseandcustomers.Classification

allowstightercontrolofdatausedtotrain,specialize,andrefinemodels.Accesstoitsoutputcanbe

restrictedanddataleakprotectiontoolscanbe

implemented;oraresponsecanbelimitedusingasubsetofdatabasedonaright-to-knowrule.

Withathird-partyLLM,thereislimitedabilityto

build“native”guardrailsaroundinputsandoutputs.Likewise,theabilitytoimplementguardrailsinsidethelearningphasesofaGenerativeAdversarial

Network1islimitedwhenusingclosedmodelsinan

Data

1.Training

Themodelisbuiltwhich

encodestherealtionships,

patternsandsequences

withintrainingdataand

modelvalidationdata.

TrainedModel

3.EnsuringCorrectness

Thereisnoguranteeofreal-worldcorrectnessfromagenerativeAImodels,anditsometimes

hallucinatesfictionalresponse

2.Generation

Thetrainedmodelcanthengeneratenewoutputsliketheoriginaldataitwastrainedon

(Optional)

FineTuning

Thegenericfoundation

modelmightbefine-tuned

togiveitexposuretoa

specialistarea.

(Optional)Alignment

Modelmightbetweaked

toaligninmorewith

expectedhumanresponse

Figure3:DatalifecycleinsideagenerativeAIapplication

application.Itiscriticaltoconsiderwhetherdata

canbeinspectedandvalidated,andwhetherits

inputsandoutputscanbeobservedwhenchoosingcomponentsofasystem.

Amodel’soutputmustbesubjecttoverification

todetecthallucinations,maliciousreinforcement,

ordriftsfromexpectedbehaviorovertime.When

usingreal-timemodeloutput,suchaswithachatbot,theobservabilityofpastperformancetopreempt

unacceptableresponsesisimportant.Akeypointis

tounderstandthedatalifecycleanditssensitivity,ascapturedinFigure3.Datasecurityrequirementscanchangeoveritslifecycle,dependingonitsproximityto,orcominglingwithotherdata.

SuccessfullysecuringGenAIsolutionsisamulti-

disciplineapproachthatrequirespartnerships

betweencybersecurity,datagovernance,data

science,andlegalandcompliance,sincedisciplineddatamanagementisattheheartofachievingGenAIdatasecurity.

Dependencies

Data

Governance

Data

Sciences

Security

Legal&Compliance

Figure4:Multi-disciplineinteractionsnecessaryforGenAIsuccess

8|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|9

TrustedGen

AImodelsandtheiroutcomes

Itmaynotbepossibletogainaccesstoandthen

validatealldatasetsusedduringthelifecycleof

aGenAIsolution.Amodelsuchasthecommonly

usedLargeLanguageModel(LLM),multi-model

models,andtransformer-basedmodelsgeneratingoutcomesthroughuserpromptorAPIrequestscanfallintooneofthefollowingmodelcategories:

.Developedandinitiallytrainedbyanexternal

party(OpenAI’sChatGPT,forinstance)andused“asis”bytheenterprise

.Developedandinitiallytrainedbyanexternal

party,thenspecializedbytheenterprisetoa

specificdomain(i.e.,specialism)withanewdatasettoaddressspecificusecases

.DevelopedandtrainedbytheenterpriseentirelySupplychainsecurityandthird/fourth-partyrisk

managementarecrucialforthefirsttwocategories.

Itisevenmoreimportanttointegratesecuritycontrolssuchasmodelauditability,dataleakageprevention,hallucinationandbiasdetection(i.e.guardrails)intotheapplicationdevelopment

pipeline.

Dataquality

Therecurrentuseandprovenanceoftrainingdataisafocalpointwhenusingexternallysourcedmodels.Itscomposition,howoftenitchanges,andhowrecursionbetweencustomerprompt/responsepairingsand

reinforcementtrainingofthemodeloccursshouldbeclear.

Whendevelopingandtrainingaproprietarymodel(thirdcategoryabove),someriskscanbeamplifiedwhileothersaremitigated.Theneedtounderstanddata’sprovenanceandclassificationoftrainingdatawhilealsotestingforbiasandderogatoryresponsesfallsontheenterprise,eventhoughthosecanbe

differentdisciplines.Atthesametime,therisks

ofrecursivetrainingfromprompt/responsepairsarereducedastheinformationdoesn’tleavethelocalmodel.

Forallmodels,organizationsmustapplytheirownadditional,adaptablecontrols,suchas:

.Specificsecuritymonitoringrules

.Completelyoriginalmeasures,suchascontrolstodetectspecificnewattacksoruserbehaviors.

.Formultiandhybridarchitectures,APIsecurityandCI/CDsecure-by-designdomains

Thekeytoassuranceofdata’sintegrityisdue

diligenceonaprovider’ssecurity,privacycontrols,andcompliance.Theircommitmentsandresponsibilities

shouldbeclearlydefinedinanycontract.

10|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|11

Application

and

infrastructuremonitoring

anddelivery

ThefinalaspectofsecurityforGenAIisprotecting

applicationsfrombeingrenderedinoperativeor

unavailable.Thisrequiresdeployingsecuritycontrolswithinapplicationsandinfrastructure,covering

compute,endpoint,network,andstorage.

Thesamesecurityandcompliancehygieneappliedtoclassicsecuritymustbeappliedhere,especiallythosehandlingsensitivedata.Corporatesecurity

policiesandmandatorysecuritycontrolsovertheselayersareasimportantasever.

GenAIapplicationswillrequiresomenewsecuritycontrols,suchaspromptanalysis,andadaptationto

existingsecuritycontrols,suchasedgeprotection,tobeeffective.Buildingadequate,automated

governancearounddataclassificationandusageshouldbepartofanysecurityroadmap.

SoftwaresupplychainmanagementismoreimportantingenerativeAIapplicationdevelopment,e.g.,for

pinningdependencyversionsinmodeldevelopmenttoensuretrainingrunsdonotbecomecorrupted.Thisisimportantformonitoringanddeliverysinceitisa

partofthesoftwaredeliverylifecycle.Continuous

Integration(CI)andcontinuousdelivery(CD)throughaDevSecOpspipelineforapplicationdevelopment

canbeusedtosecuremodeldevelopment.Red

teaming2,anapplicationtotestforvulnerabilities,shouldincludetestingofanyprompts.Thisaimstostopmalicioususersfrom:

.Corruptingorrecoveringtrainingdata

.Manipulatingresultsforotherusers

.Performingdenialofserviceattacks

.Exfiltratingdata

AsgenerativeAIevolves,securityfunctionsnativetoGenAIwilltoo,aswilltheircapabilitiestointegratewithexternalsecuritysolutions.

12|GenerativeA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论