




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
STUDY
AIASGAMECHANGER
TheNewDrivingForceoftheAutomotiveIndustry
Authors&Contactperson
Lead
AugustinFriedel
SoftwareDefinedVehiclesAugustin.Friedel@
Lead
MatthiasBorch
ArtificialIntelligenceMatthias.Borch@
ContactPerson
StephanBaier
ArtificialIntelligenceStephan.Baier@
Author
MarcusWilland
Mobility
Marcus.Willand@
Author
Dr.NilsSchaupensteiner
TransformationAdvisory
Nils.Schaupensteiner@
Author
PatrickRuhland
TransformationAdvisory
Patrick.Ruhland@
AIasGameChanger
Thestudy“AIasGameChanger“anditssummarywerepublishedby:
MHPGesellschaftfürManagement-undIT-BeratungmbH
Allrightsreserved!
Noreproduction,microfilming,storage,orprocessinginelectronicmediapermittedwithouttheconsentofthepublisher.Thecontentsofthispublicationareintendedtoinformourcustomersandbusinesspartners.Theycorrespondtothestateofknowledgeoftheauthorsatthetimeofpublication.Toresolveanyissues,pleaserefertothesourceslistedinthepublicationorcontactthedesignatedcontactpersons.Opinionarticlesreflecttheviewsoftheindividualauthors.Roundingdifferencesmayoccurinthegraphics.
3
4
Contents
Contents4
Tableoffigures6
12KeyFindings8
WelcometoChange!10
01.RevolutionandAutomotiveMarketPotential11
02.InvestmentinCompaniesWithanAIFocus15
03.PilotProjectsandImplementation19
04.AIModels,Levels,andUseCases23
4.1TheGameChanger:WhatCanBeAchievedWithAI26
4.2AutomobileManufacturersWithLowAIInvestment29
4.3AIModels:MakeorBuy?29
05.AIApplicationsAlongtheAutomotiveValueChain31
5.1AIOperationinVehiclesandintheCloud35
5.2AIMonetizationinVehicles39
5.3AddedValueofAIApplicationsinCompanies40
06.WhattheCustomerWants:TheUserPerspective47
6.1UseandUnderstandingofAIApplications49
6.2AdvantagesandDisadvantages–GenerallyandinVehicles49
6.3PurchasingDecision,TrustandWillingness
toPay51
AIasGameChanger|Contents
07.SuccessFactorsandStrategicApproach55
7.1StrategyandGoalPlanning56
7.2ThinkfromthePerspectiveoftheCustomer,nottheTechnology56
7.3OrganizationalAnchoringandOwnership58
7.4LocalDifferencesrequirelocalSetup59
7.5ReducingComplexity59
7.6Useand
MonetizationofData60
7.7ChecklistforsuccessfulImplementation61
08.Challenges,Responsibility,andRisks63
8.1CostsofTraining
andOperation64
8.2Dataand
DigitalizationasaBasis65
8.3BusinessModelsandCasesforB2CandB2B65
8.4EthicsandResponsibility67
8.5NewRisksandRegulatoryChallenges69
09.AIApplicationsintheAutomotiveIndustry:7RecommendationsforAction71
10.FurtherInformations75
LiteratureandSources76
Contact
International78
About
MHP79
5
6
Tableoffigures
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift
(Coatue,2024)12
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)12
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)16
Figure4:InvestmentinAIstacklayers(Coatue,2024)17
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)21
Figure6:InterconnectedAIconcepts24
Figure7:VisualizationofAIasapyramid25
Figure8:ClassificationofAIterms27
Figure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024)28
Figure10:SchematicdiagramofthetrainingofAIfoundationmodelsforvehicles30
Figure11:UseofAIalongthevaluechain32
Figure12:SignificantimprovementsoffunctionsandfeaturesthroughAI33
Figure13:InterestinAIfunctionscomparedinternationally34
Figure14:Roleofon-premise,cloud,andvehicleforAImodels35
Figure15:Levelsofasoftware-definedvehicle(SDV)(Willand,Friedel,&Schaupensteiner,2023)36
Figure16:DifferentmodelsforADASandADapplicationsandfunctions37
Figure17:AI’spotentialatdifferentstagesofthevaluechain
(Capgemini,2023)40
Figure18:UseofAI-basedsolutionsbyregion41
Figure19:KeydriversbehindtheuseofAIinproduction42
7
AIasGameChanger|Tableoffigures
Figure20:Decisiveissue–fewerusersofsoftwareduetoAIorfreesoftware(Coatue,2024)43
Figure21:PossibleusesofAIinsoftwaredevelopment
(Wee2024)44
Figure22:UnderstandingofAIincars48
Figure23:AdvantagesofusingAIincars49
Figure
24:TheperceivedadvantagesanddisadvantagesofusingAI50
Figure
25:AIincars:purchasemotivationorblocker?51
Figure26:TrustinstakeholderswithregardtotheimplementationofAIinvehicles52
Figure27:WillingnesstopayforAIfunctions52
Abb.28:AssessmentofthefutureAIcompetenceofcarmanufacturersbyregion53
Figure
29:Customerandusecasefirst,andthenAIapplicationsandmodels57
Figure30:Dimensionsforvalidatingtechnicalfeasibility57
Figure31:TrainingcostsforAImodelsareincreasing(StanfordUniversity,2024)64
Figure32:Dataavailabilityandqualitybyregion65
Figure33:Customers’willingnesstopayisunclear;costsariseforimplementationandoperation66
Figure
34:ClassificationofAIusecasecategoriesandpossiblebusinessmodels67
Figure35:RisksassociatedwiththeuseofAI68
Figure
36:PrinciplesandpenaltiesoftheEUAIAct70
Table1:ThedevelopmentofAImodelsdividedintodifferenttimephases27
12KeyFindings
ThewidespreaduseofAIispredictedtobethenextrelevantplatformshiftaftercloudtransformation–originalequipmentmanufacturers(OEMs)needtostepuptheiractivities.
Morethan
Only
ofrespondentsseetime-savingasthebiggestbenefitofAIapplications.
SkepticismaboutAI
applicationsisgreaterin
theUSthaninEurope
orChina.
ofrespondentsinChinastatethattherisksofAI
outweighthebenefits;thisfigureisaround25percentinEuropeandtheUS.
Themostfrequentlymentioneddisadvantagesof
AIarefearoflossofcontrol,lossofdataprotectionandpersonalprivacy,andsecurityrisks.
8
CustomersworldwidewanttouseAIincars,butrarelypayforit.
InChina,morethantwiceasmanycustomershavealreadyusedAIintheircarsasin
Europe.
KI
InChina,AIfunctionsmostlyhaveapositive
influenceoncar
purchasing
decisions–only
ofrespondents
wouldnotbuy
avehiclebasedonAIfunctions.
TraditionalcarmanufacturersarethemosttrustedwhenitcomestotheuseofAI,far
aheadofstateinstitutionsandnewcarmanufacturers.
Today,Chinesecar
manufacturersareregardedasleadersinAIinnovation.Infiveyears’time,JapaneseOEMswillbeattheforefront,followedbyChineseandGermanOEMs.
AIisnotonlyrevolutionizingthein-vehiclecustomerexperience–theentirevaluechainis
experiencingdisruptivechange.
SuccessfulimplementationofAIapplicationsisnotpossiblewithoutpriordigitalizationandaccesstospecificdatasources.
AIasGameChanger|12KeyFindings
9
10
WelcometoChange!
Dearreaders,
Artificialintelligencewillbethenextplatformshiftthatrevolutionizesallindustrialsectors.StakeholdersintheautomotivevaluechainhaverealizedthatAIischallengingmanytradi-tionalprocessesandwaysofthinking.TheintroductionofthePC,thestationaryInternetandthenthemobileInternet,andCloud/SaaSpreviouslyhadasimilarlydisruptiveimpact.Newbusinessmodelsandprofitpoolsareemerging,whileatthesametimetherearenu-merouschallengestobetackledwithregardtotechnology,partnerships,andethicalissues.Inthisstudy,wetracethegroundbreakingdevelopmentsinAIsofarandexaminetheop-portunitiesandriskswithintheautomotiveindustry.Accompanyusthroughpresentandfuturescenarios–withspecificrecommendationsforactionforyourownstrategywhenitcomestoimplementingAIapplicationsinproductionandinvehicles.
Whetherthenewtechnologiesmeettheexpectationsofdriversisdeterminedrightthereinthecockpit.That’swhy,inChapter8,weoutlinetheuserperspectivebasedonourowncurrentdata.OurinternationalsurveyprovidesinformationaboutwhichproductsandservicesfromautomotivecompaniescouldfulfillAIneedsandwhatthewillingnesstopaylookslike.Thatmakesthisstudyessentialreadingfordecision-makers,CIOs,andapplica-tiondevelopers.
InvestorsinAItechnologiesandAIteamsneedaconsistent,long-termcost-benefitratio.Wethereforeexaminethedirect/indirectmonetizationofin-carAIandlookatnewbusinessmodelsbasedonAIanddigitalization.
Ultimately,asissooftenthecase,itbecomesclearthatthejourneyintonewtechnologicalterritoryisbestundertakenwithexperiencedtravelguides.Gettheknow-howyouneed–andalwaysbecurious!
ENABLINGYOUTOSHAPEABETTERTOMORROW
Bestregards,
Dr.JanWehinger
ClusterLeadSoftwareDefinedVehicles
MHPManagement-undIT-BeratungGmbHLudwigsburg,September2024
AIasGameChanger|01.RevolutionandAutomotiveMarketPotential
01.
Revolutionand
AutomotiveMarketPotential
11
EveryonerecognizesthatAIisthenextplatformshift
Mobile Internet(Web2.0)
Cloud/SaaS
GenerativeAI
Desktop Internet(Web1.0)
Networking
PC
Mainframe
1960–19801980s1990s2000s2010s2015–20202022–...
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024)
AI-Basedsystemsforautomotiveindustrytoreach
US$35.7billionby2033
35.7
26.6
20.0
...inbillionUS$
15.2
11.7
9.2
5.8
7.3
3.9
4.7
3.2
20232024202520262027202820292030203120322033
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)
12
ItishighlylikelythatthebigtechnologycompaniessuchasGoogle,Meta,andMicrosoft–whichgainedinimportancewiththelastplatformshifts(supercy-cles)–willalsodominatetheAIage.
Alongtheautomotivevaluechain,stakeholdersaresometimesaccusedofhavingrespondedtothelastplatformshiftstoolateorwithanineffectivestrategy.Inouropinion,therelevanceofconnectivityandcloudsolutionswasrecognizedtoolateandimplementationcouldhavebeenbetter.Theindustryisatthebegin-ningoftheAIplatformshiftandthereisstilltheop-portunitytorespondearlywithatargetedstrategy.CompanieslikeApplehaveshownthatitisnotneces-
Onefear,however,isthatartificialintelligencewillincreasinglyreplacepeopleandjobsmaydisappear.Currently,AIapplicationsareregardedmoreasacom-plementratherthanareplacement.AcademicssuchasKarimLakhanifromHarvardBusinessSchoolbelievethatAIwillnotreplacehumans.OnepossiblescenarioisthatpeoplewhouseAIwillhaveasignificantadvan-tageoverworkerswhodonotuseit.
RegardingthequestionofwhetherAIwillimprovetheeconomy,asurveyshowsamixedpicture.Worldwide,34percentofrespondentsbelievethattheuseofAIwillimprovetheeconomicsituationintheircountryinthenextthreetofiveyears.Thishopeisaboveaverage
“AIWon’tReplaceHumans—
ButHumansWithAIWillReplaceHumansWithoutAI.”(HBR,2023)
sarytobethefirstinnovator.WithastrongAIstrategy,acompanycanalsoexploitpotentialasafastfollower.Themarketforartificialintelligenceintheautomotiveindustryhasshownremarkablegrowthinrecentyears.ItiscurrentlyestimatedtobearoundUSD3.9billionin2024andisexpectedtogrowtoUSD15billionby2030.SomemarketanalysesanticipatethatAIsalesintheautomotivesectorwillrisetooverUSD35billionin2033.Growthfrom2024to2033correspondstoarateof28percent.
Estimatesinothermarketreportsmaybeslightlyhigh-erorlower,butallshowthesametrend.Thismeansthatextensiveeconomicopportunitiesarebeingcreat-edalongthevaluechainformanufacturers,suppliers,andserviceproviders.
incountriessuchasThailand,India,andSouthAfrica.Atthelowerendoftherankingarecountriesinclud-ingBelgium,Japan,theUS,andFrance(Ipsos,2023).Overall,thereareincreasingsignsthattherearefarmoreopportunitiesthanrisks.Thetargeteduseofarti-ficialintelligencewillsignificantlyaffectourprosperityinthecomingdecades.AIboostsefficiencyandcancounterthenegativeeffectsofskillsshortages,demo-graphicchanges,andhighlocationcosts.Itisnowuptotheautomotiveindustrytotakeboldandappropri-atelyfastaction–andfollowastrategicallyintelligentapproach.
AIasGameChanger|01RevolutionandAutomotiveMarketPotential
13
14
AIasGameChanger|02.InvestmentinCompaniesWithanAIFocus
02.
Investmentin
CompaniesWithanAIFocus
15
16
Magnetforinvestment:TotalinvestmentinAIcompaniesfoundedsince2001inbillionsofUSdollars
16.5bn.US$GreatBritain
4.6bn.US$WashingtonDC
5.0bn.US$Germany
29.2bn.US$NewYork
6.1bn.US$France
16.6bn.US$Boston
★★★
★★
★★
★★
★★★
39.6
Bn.US$
8.4bn.US$
Diego
10.2bn.US$LosAngeles
5.3bn.US$San
Dallas
234.1
Bn.US$
101.2
bn.US$
55.8bn.US$SanFrancisco
7bn.US$Seattle
41.7
bn.US$SiliconValley
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)
AlookatthedistributionofAIinvestmentshowsthedominanceofthoseregionsthatalsodominatedthemarketinthelastplatformshifts(seeCoatue,2024;Figure1).Itcanbeassumedthattheautomotivein-dustrywillcontinuetobedependentonhyperscalersandtechnologycompanies.Collaborationsregardingsoftware,cloudapplications,andtheuseofAIareex-pectedtoincrease.
AnanalysisshowsthatalargeshareoftheinvestmentinAIcompaniescomesfromtheUS.Acloserlook(Coatue,2024)showsthatonlyapprox.3percentoftheventurecapitaldealshaveaclearlinktoAI,butthat15percentoftheinvestedcapitalflowsintoAIstart-ups.Fromthisimbalance,itcanbeconcluded
thatthemarketseesrelativelyhighvaluationsandcorrespondinglyhighinvestmentrounds.Thefinanc-ingroundsshowthatmostoftheinvestmentsin2024wentintocompaniesthatdevelopAImodelssuchasChatGPT,Mistral,andClaude.AtotalofUSD14bil-lionwasinvestedinAImodelsinthefirsthalfoftheyear.Thisequatesto62percent.
In2024,asmallerproportionofthecapitalinvestedinAIcompanieswentintofirmsthatdevelopsemicon-ductorsforAIapplications.Roboticsapplications,suchashumanoidrobots,garneredapprox.USD2billionincapital,whichcorrespondstoaround9percentofthetotal.
17
AmongthelargestinvestorsintheAIfieldarethemajortechnologycompaniesincludingMicrosoft,Amazon,NVIDIA,andAlphabet(Google’sholdingcompany).In2023,thesecompaniesinvestedaroundUSD25billionandwerethusresponsiblefor8percentofinvestment.
Carmanufacturers’investmentsincompaniesthatdealwithartificialintelligencearemoremodest.Belowaresomeexamples:
InvestmentsbyNIOCapital
Momenta:Start-upwithafocusonautonomousdriv-ingandonthedevelopmentoftechnologiesforenvi-ronmentalperceptionandhigh-precisionmapping
Pony.ai:Companyfocusingonautonomousdriving;itformspartnershipstodevelopmobilitysolutions
BlackSesameTechnologies:CompanyspecializinginAIchipsandsystems
InvestmentsbyBMWiVentures
Alitheon:SpecializesinopticalAItechnologyforob-jectidentificationandauthenticationwithFeaturePrinttechnology
Recogni:Focusesonhigh-performanceAIprocessingwithlowpowerconsumptionforautonomousvehicles
AutoBrains:DevelopsAIsolutionsfortheautomotiveindustry,particularlyinthefieldofautonomousdriv-ingtechnologies
InvestmentsbyPorsche
Sensigo:DeveloperofanAI-supportedplatformforoptimizingvehiclediagnosticsandrepairprocesses
Waabi:CanadiandeveloperofAI-basedsolutionsforself-drivingtrucks
AppliedIntuition:Providessoftwaresolutionsforthedevelopmentofdriverassistancesystemsandauton-omousdriving
Cresta:Specializesinreal-timeintelligenceforcustom-erinteractionsandcommunicationsolutions
WhereareAIVCdollarsgoing?
Funding~$14B~$4B~$2B~$2B~$100M
100
80
60
40
20
0
62%
AIModels
20%
AIApps
9%
AIOps/AICloud
9%
AIRobotics
<1%
AISemis
AIasGameChanger|02InvestmentinCompaniesWithanAIFocus
Figure4:InvestmentinAIstacklayers(Coatue,2024)
18
AIasGameChanger|03.PilotProjectsandImplementation
03.
PilotProjectsandImplementation
19
20
Without
comprehensivepriordigitalization,the
implementationof
AIapplicationswill
beaninsurmountablechallenge.Car
manufacturersandsuppliersshould
allocatebudgetsforAIandbuildup
expertisepromptly.
21
Intheautomotiveindustry,amixedpictureisemergingwithregardtotheacceptanceandimplementationofAIapplicationsalongthevaluechain.Thelevelofim-plementationislowamongsuppliersanddealersandinafter-salesservices.Automobilemanufacturershavemadefurtherprogressintermsofimplementation,butthereissignificantpotentialforimprovementhere.
Lookingattheautomotiveindustryasawhole,only4percentofcompanieshavebeguntoimplementAIapplicationsatselectedlocations.Thatisaroundhalfasmuchasinthepharmaceuticalindustry.Inretail,thefigureisfourtimeshigher.Some28percentofcompaniesintheautomotivevaluechainareworkingonAIpilotprojects,andthevastmajority(68percent)arestillatexplorationstage(CapgeminiResearchIn-stitute,2023).
Only30percentofthecompaniesintheautomotivesectorhaveadedicatedteamandanextrabudgetfortheintroductionandimplementationofAIprojects.Bycomparison,therateis62percentinretail,74percentinthehigh-techsector,and52percentinaerospace/defense.(Capgemini,2023)
Interimconclusion:Theautomotiveindustry’sinvest-mentinAIhasbeenbelowaveragetodate;thisaffectsbudgetsandspecializedteams.GiventhehugeimpactofAIontheindustry,itisadvisabletorectifythissitua-tionquickly.
ProportionofcompanieswithadedicatedteamandbudgetforAI
A
e
g
a
r
62%
ve
52%
36%
30%
40%
74%
CarHighTech
manufacturing
RetailAerospace/
defense
Tele-
communi-
cations
AIasGameChanger|03PilotProjectsandImplementation
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)
22
AIasGameChanger|04.AIModels,Levels,andUseCases
04.
AIModels,Levels,andUseCases
23
24
Interconnected
AIconcepts
Eachconceptisaspecializedpart
oftheoneprecedingit.
Figure6:InterconnectedAIconcepts
AIcoversawidefieldthatcanbedividedintoseveralareasandtermsusingahierarchicaldiagram:
ArtificialIntelligence(AI):Researchareafocusingonthecreationofintelligentmachines.
Machinelearning(ML):BranchofAIfocusingonthedevelopmentofmachinesthatcanlearnfromdata.
Deeplearning:Asub-categoryofmachinelearn-ingbasedonartificialneuralnetworks.Examplesareconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).
GenerativeAI:Aspecialtypeofartificialneuralnet-worksthatgeneratedatasimilartothetrainingdata.Examplesaregenerativeadversarialnetworks(GANs)andlargelanguagemodels(LLMs).
WithAIapplications,variouscategoriesofusecasescanbeimplemented:
Datamanagement:Thisinvolvesharmonizingdataandobtainingfindings.Itisessentialforthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机四级软件测试工程师必做试题及答案
- 集中备考2024年公路工程试题及答案
- 网络硬件设备功能解析试题及答案
- 网络设备配置练习试题及答案
- 性能测试工具使用试题及答案
- 三级计算机数据库知识点试题及答案
- 2025年软考网络工程师历年试题及答案总结
- 2025年机电沟通技巧试题及答案
- 2025年信息系统安全管理试题及答案
- 公路安全评估体系考题及答案
- 质量部运行卓越绩效体系
- XXX燃气公司门站投产试运行方案
- 甲状腺结节射频消融术后护理
- 种植牙沙龙策划方案
- 大众安徽测评题库
- 中医培训课件:《穴位埋线减肥》
- 深度学习及其应用-复旦大学中国大学mooc课后章节答案期末考试题库2023年
- 产品出厂检验报告
- 华师大版八年级数学下册知识点
- 高中通用技术大单元项目式教学实践研究 论文
- 机械设计基础课程设计设计用于带式运输机的一级圆柱齿轮减速器
评论
0/150
提交评论