




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1函数模型及其应用1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=eq\f(k,x)+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=axn+b(a,b为常数,a≠0)2.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变更随x的增大渐渐表现为与y轴平行随x的增大渐渐表现为与x轴平行随n值变更而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax概念方法微思索请用框图概括解函数应用题的一般步骤.提示解函数应用题的步骤1.(2024•山东)基本再生数与世代间隔是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数随时间(单位:天)的变更规律,指数增长率与,近似满足.有学者基于已有数据估计出,.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍须要的时间约为A.1.2天 B.1.8天 C.2.5天 D.3.5天【答案】B【解析】把,代入,可得,,当时,,则,两边取对数得,解得.故选.2.(2024•新课标Ⅲ)模型是常用数学模型之一,可应用于流行病学领域.有学者依据公布数据建立了某地区新冠肺炎累计确诊病例数的单位:天)的模型:,其中为最大确诊病例数.当时,标记着已初步遏制疫情,则约为A.60 B.63 C.66 D.69【答案】C【解析】由已知可得,解得,两边取对数有,解得,故选.3.(2024•新课标Ⅱ)2024年1月3日嫦娥四号探测器胜利实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆须要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,放射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为,月球质量为,地月距离为,点到月球的距离为,依据牛顿运动定律和万有引力定律,满足方程:.设.由于的值很小,因此在近似计算中,则的近似值为A. B. C. D.【答案】D【解析】.,满足方程:.,.故选.4.(2024•上海)在探讨某市场交通状况时,道路密度是指该路段上肯定时间内通过的车辆数除以时间,车辆密度是该路段肯定时间内通过的车辆数除以该路段的长度,现定义交通流量为,为道路密度,为车辆密度..(1)若交通流量,求道路密度的取值范围;(2)已知道路密度,交通流量,求车辆密度的最大值.【解析】(1),越大,越小,是单调递减函数,,当时,最大为85,于是只需令,解得,故道路密度的取值范围为.(2)把,代入中,得,解得.,①当时,,.②当时,是关于的二次函数,,对称轴为,此时有最大值,为.综上所述,车辆密度的最大值为.5.(2024•上海)有一条长为120米的步行道,是垃圾投放点,若以为原点,为轴正半轴建立直角坐标系,设点,现要建设另一座垃圾投放点,函数表示与点距离最近的垃圾投放点的距离.(1)若,求、、的值,并写出的函数解析式;(2)若可以通过与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点建在何处才能比建在中点时更加便利?【解析】(1)投放点,,表示与距离最近的投放点(即的距离,所以,同理分析,,,由题意得,,,则当,即时,;当,即时,;综上;(2)由题意得,,所以,则与坐标轴围成的面积如阴影部分所示,所以,由题意,,即,解得,即垃圾投放点建在与之间时,比建在中点时更加便利.6.(2024•上海)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出肯定数(亿元)占卫生总费用比重肯定数(亿元)占卫生总费用比重肯定数(亿元)占卫生总费用比重201228119.009656.3234.3410030.7035.678431.9829.99201331668.9510729.3433.8811393.7935.989545.81304011295.4131.9913437.7538.0510579.2329.96202440974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)指出2012年到2024年之间我国卫生总费用中个人现金支出占比和社会支出占比的变更趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数探讨函数的单调性,并预料我国卫生总费用首次超过12万亿的年份.【解析】(1)由表格数据可知个人现金支出占比渐渐削减,社会支出占比渐渐增多.(2)是减函数,且,在上单调递增,令,解得,当时,我国卫生总费用超过12万亿,预料我国到2028年我国卫生总费用首次超过12万亿.7.(2024•上海)依据预料,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【解析】(1),前4个月共投放单车为,前4个月共损失单车为,该地区第4个月底的共享单车的保有量为.(2)令,明显时恒成立,当时,有,解得,第42个月底,保有量达到最大.当,为公差为等差数列,而为等差为1的等差数列,到第42个月底,单车保有量为..,第42个月底单车保有量超过了容纳量.8.(2024•新课标Ⅰ)某公司安排购买1台机器,该种机器运用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器运用期间,假如备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年运用期内更换的易损零件数,得如图柱状图:记表示1台机器在三年运用期内需更换的易损零件数,表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.(Ⅰ)若,求与的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(Ⅰ)当时,(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又更换易损零件不大于的频率为不小于0.5.则的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(元假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(元购买1台机器的同时应购买19台易损零件.1.(2024•梅河口市校级模拟)“开车不喝酒,喝酒不开车.”近日,公安部交通管理局下发《关于2024年治理酒驾醉驾违法犯罪行为的指导看法》,对综合治理酒驾醉驾违法犯罪行为提出了新规定,依据国家质量监督检验检疫总局下发的标准,车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般状况下,某人喝一瓶啤酒后酒精在人体血液中的变更规律的“散点图”见图,且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:,表:车辆驾驶人员血液酒精含量阈值驾驶行为类别阈值饮酒后驾车,醉酒后驾车A. B. C. D.【答案】B【解析】由散点图可得该人喝一瓶啤酒后的2个小时内,其酒精含量阈值大于20,令,故,所以,故选.2.(2024•碑林区校级模拟)咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌始终在探究的内容,而2024年至今中国咖啡行业的发展实践证明白以优质的原材料供应以及大量实惠券、买赠活动吸引消费者无疑是开拓咖啡的中国市场的最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元杯,其原材料成本为7元杯,营销成本为5元杯,且品牌门店供应如下4种实惠方式:(1)首杯免单,每人限用一次;(2)3.8折实惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5杯送5杯,不限运用人数和运用次数.每位消费者都可以用以上4种实惠方式中选择不多于2种运用.现在某个公司有5位后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数须保持一样;请问,这个公司的技术人员不少于人时,无论5位后勤人员采纳什么样的实惠方式购买咖啡,这笔订单该品牌门店都能保证盈利.A.28 B.29 C.30 D.31【答案】C【解析】由题意知,咖啡产品原价为30元杯,成本为12元杯,实惠方式(1)免单购买,每购买1杯该品牌门店亏损12元;实惠方式(2)每杯售价11.4元,每购买1杯该品牌店亏损0.6元;实惠方式(3)和(4)相当于5折购买,每购买1杯该品牌门店盈利3元;我们只须要考虑最优的购买方式,每位后勤工作人员能选择2种实惠方式,必定包含实惠方式(1),可以免单购买5杯咖啡,该品牌门店因此亏损60元,最优的购买方式是不包含原价购买任何一杯咖啡,说明只要用原价购买1杯咖啡,哪怕最大程度利用3.8折实惠,花费也肯定会超过搭配运用(2)(4)实惠购买咖啡),故明显该品牌门店必需依据实惠方式(3)和(4)售出20杯以上的咖啡才能盈利,故技术人员人数肯定多于人;技术人员在人时,免单购买5杯咖啡买5送5购买20杯咖啡折购买14杯咖啡,该品牌门店照旧亏损;技术人员为30人时,最优购买方式为免单购买5杯咖啡十买5送5购买20杯咖啡十买2送2购买4杯咖啡折购买1杯咖啡,该品牌门店盈利元;由于4,故技术人员超过30人时,该品牌门店能保证持续盈利.故选.3.(2024•道里区校级四模)中国的技术领先世界,技术的数学原理之一便是闻名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽视不计.依据香农公式,若不变更带宽,而将信噪比从1000提升至4000,则大约增加了附:A. B. C. D.【答案】B【解析】当时,,当时,,因为,所以将信噪比从1000提升至4000,则大约增加了,故选.4.(2024•吉林四模)某品牌牛奶的保质期(单位:天)与储存温度(单位:满足函数关系,该品牌牛奶在的保质期为270天,在的保质期为180天,则该品牌牛奶在的保质期是A.60天 B.70天 C.80天 D.90天【答案】C【解析】某食品的保鲜时间(单位:小时)与储存温度(单位:满足函数关系,该品牌牛奶在的保质期为270天,在的保质期为180天,,解得,该品牌牛奶在的保质期:(天.故选.5.(2024•成都模拟)为迎接大运会的到来,学校确定在半径为的半圆形空地的内部修建一矩形观赛场地,如图所示.则观赛场地的面积最大值为A. B. C. D.【答案】D【解析】由题意矩形的另两个顶点在半圆轴上时,矩形面积才能取得最大值,,设矩形在半圆板直径上的一边长为,角如图所示,则,另一边的长为,矩形面积为,当即时,也即长为,宽为时,矩形面积最大.最大面积是.故选.6.(2024•茂名二模)在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边作方形,会发觉塔的高度正好跟此对角线长度相等.以塔底座的边作方形,作方圆图,会发觉方圆的切点正好位于塔身和塔顶的分界.经测量发觉,木塔底层的边不少于47.5米,塔顶到点的距离不超过19.9米,则该木塔的高度可能是(参考数据:A.66.1米 B.67.3米 C.68.5米 D.69.0米【答案】B【解析】设该木塔的高度为,则由图可知,(米.同时,(米.即木塔的高度约在67.165米至67.9米之间,结合选项,可得.故选.7.(2024•漳州三模)中国是茶的家乡,也是茶文化的发源地.中国茶的发觉和利用已有四千七百多年的历史,且长盛不衰,传遍全球为了弘扬中国茶文化,某酒店推出特色茶食品“金萱排骨茶”,为了解每壶“金萱排骨茶”中所放茶叶量克与食客的满足率的关系,通过试验调查探讨,发觉可选择函数模型来拟合与的关系,依据以下数据:茶叶量克123454.344.364.444.454.51可求得关于的回来方程为A. B. C. D.【答案】D【解析】可令,因为,.所以关于的回来直线过点,又,,,,把代入上面4个解析式检验可知只有过点,故选.8.(2024•济南模拟)“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即.国内生产总值被公认为是衡量国家经济状况的最佳指标,如表是我国年数据:年份20242024202420242024国内生产总值万亿68.8974.6483.2091.9399.09依据表中数据,年我国的平均增长量为A.5.03万亿 B.6.04万亿 C.7.55万亿 D.10.07万亿【答案】C【解析】设2024年国内生产总值为万亿,则依次万亿,万亿,万亿,万亿.年我国的平均增长量为:万亿.答:年我国的平均增长量为7.55万亿.故选.9.(2024•厦门模拟)大西洋鲑鱼每年都要逆流而上,游回到自己诞生的淡水流域产卵.记鲑鱼的游速为(单位:,鲑鱼的耗氧量的单位数为.科学探讨发觉与成正比.当时,鲑鱼的耗氧量的单位数为890.则当时,其耗氧量的单位数为A.2670 B.7120 C.7921 D.8010【答案】C【解析】与成正比,比例系数设为,可得,当时,,即有,即,则当时,,即,则,可得,故选.10.(2024•张家口二模)为彻底打赢脱贫攻坚战,2024年春,某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户安排种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10000斤,成本2000元,每斤售价0.5元,茄子每亩产量5000斤,成本3000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为A.4万元 B.5.5万元 C.6.5万元 D.10万元【答案】B【解析】设冬瓜和茄子的种植面积分别为,亩,总利润万元,则目标函数,线性约束条件为,即,作出可行域如图,由可得,即,平移直线,可知直线经过点时,即,时,取得最大值5.5万元.故选.11.(2024•合肥三模)某校高一年级探讨性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光.当被测物体横向速度为零时,反射光与探测光频率相同.当横向速度不为零时,反射光相对探测光会发生频移,其中为测速仪测得被测物体的横向速度,为激光波长,为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁处,发出的激光波长为,测得某时刻频移为,则该时刻高铁的速度约等于A. B. C. D.【答案】D【解析】,故,即,故米小时.故选.12.(2024•成都模拟)为迎接大运会的到来,学校确定在半径为,圆心角为的扇形空地的内部修建一平行四边形观赛场地,如图所示,则观赛场地的面积最大值为A. B. C. D.【答案】D【解析】如图,作,,垂足分别为、,则平行四边形面积即为矩形的面积,设,由题,则,,所以矩形面积,其中,则,,所以当时,矩形面积最大,最大值为,此时平行四边形的面积也取得最大值.故选.13.(2024•房山区二模)把物体放在冷空气中冷却,假如物体原来的温度是,空气的温度是,经过分钟后物体的温度可由公式求得,其中是一个随着物体与空气的接触状况而定的大于0的常数.现有的物体,放在的空气中冷却,4分钟以后物体的温度是,则约等于(参考数据:A.0.6 B.0.5 C.0.4 D.0.3【答案】D【解析】由题意可得:,,两边取对数可得:,.故选.14.(2024•山东模拟)某学校数学建模小组为了探讨双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影响,利用热传导定律得到热传导量满足关系式,其中玻璃的热传导系数焦耳(厘米度),不流通、干燥空气的热传导系数焦耳(厘米度),△为室内外温度差,值越小,保温效果越好,现有4种型号的双层玻璃窗户,详细数据如表:型号每层玻璃厚度(单位:厘米)玻璃间夹空气层厚度(单位:厘米)型0.43型0.34型0.53型0.44则保温效果最好的双层玻璃的型号是A.型 B.型 C.型 D.型【答案】D【解析】设,,,,,,和△均为正常数,,型玻璃保温效果最好.故选.15.(2024•辽宁模拟)人们通常以分贝(符号是为单位来表示声音强度的等级,分贝是较志向的宁静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严峻影响听力和引起神经衰弱、头疼、血压上升等疾病,假如突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜裂开出血,双耳完全失去听力,为了爱护听力,应限制噪声不超过90分贝,一般地,假如强度为的声音对应的等级为,则有,则的声音与的声音强度之比为A.10 B.100 C.1000 D.10000【答案】D【解析】由题意,可知当声音强度的等级为时,有,即,则,此时对应的强度,当声音强度的等级为时,有,即,则,此时对应的强度,的声音与的声音强度之比为.故选.16.(2024•茂名二模)某贫困县为了实施精准扶贫安排,使困难群众脱贫致富,对贫困户实行购买饲料实惠政策如下:(1)若购买饲料不超过2000元,则不赐予实惠;(2)若购买饲料超过2000元但不超过5000元,则按标价赐予9折实惠;(3)若购买饲料超过5000元,其5000元内的赐予9折实惠,超过5000元的部分赐予7折实惠.某贫困户购买一批饲料,有如下两种方案:方案一:分两次付款购买,分别为2880元和4850元;方案二:一次性付款购买.若取用方案二购买此批饲料,则比方案一节约元A.540 B.620 C.640 D.800【答案】C【解析】由题意可得,方案一中第一次付款2880元时,,该款饲料的原价享受了9折实惠,则其原价为元;其次次付款4850元时,,且,其原来的价格为元.分两次购买饲料的原价为元.方案二:若一次性付款,则应付款为:元,方案二比方案一节约元.故选.17.(2024•武汉模拟)技术的数学原理之一便是闻名的香农公式:.它表示:在受噪声干挠的信道中,最大信息传递速率取决于信道带宽、信道内信号的平均功率、信道内部的高斯噪声功率的大小,其中叫做信噪比.依据香农公式,若不变更带宽,而将信噪比从1000提升至2000,则大约增加了A. B. C. D.【答案】A【解析】将信噪比从1000提升至2000时,大约增加了,故选.18.(2024•威海一模)尽管目前人类还无法精确预报地震,但科学家通过探讨发觉地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.2011年3月11日,日本东北部海疆发生里氏9.0级地震与2008年5月12日我国汶川发生里氏8.0级地震所释放出来的能量的比值为A. B.1.5 C. D.【答案】A【解析】设日本地震所释放出的能量是,汶川地震所释放出的能量是,则,,,;.故选.19.(2024•道里区校级一模)某商场每天的食品销售额(万元)与该商场的总销售额(万元)具有相关关系,且回来方程为.已知该商场平均每天的食品销售额为8万元,估计该商场平均每天的食品销售额与平均每天的总销售额的比值为A. B. C. D.【答案】A【解析】商场每天的食品销售额(万元)与该商场的总销售额(万元)的线性回来方程为,当商场平均每天的食品销售额为8万元时,该商场平均每天的总销售额为,该商场平均每天的食品销售额与平均每天的总销售额的比值为:,故选.20.(2024•运城一模)公元前5世纪,古希腊哲学家芝诺发表了闻名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处起先与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当竞赛起先后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米,,所以,阿基里斯恒久追不上乌龟.依据这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为A.米 B.米 C.米 D.米【答案】D【解析】由题意可知,乌龟每次爬行的距离构成等比数列,且,,,乌龟爬行的总距离为,故选.21.(2024•桥西区校级模拟)2024年国际泳联游泳锦标赛在韩国光州实行,最终中国队收获16枚金牌,位列金牌榜第激昂人心!在这届国际游泳锦标赛的200米男子自由泳决赛中,中国某游泳名将的成果是1分44.93秒,若该名将游泳时每划的距离略低于自身的身高(整个过程视为匀速,且每划的距离视为近似相等),则他在这次决赛中前20秒的总划数可能为A.15 B.21 C.27 D.33【答案】B【解析】这名游泳名将每秒钟划水的距离约为,若20秒的总划数为21,则平均每秒钟的划数为1.05,则,符合每划的距离略低于自身的身高这条件,而其他选项不符合条件.故选.22.(2024•重庆模拟)为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2024年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为,2024年起先全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2024年度实施的扶贫项目,各项目参与户数占比(参与户数占2024年贫困总户数的比)及该项目的脱贫率见表:实施项目种植业养殖业工厂就业参与占户比脱贫率那么2024年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.A. B. C. D.【答案】B【解析】2024年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选.23.(2024•荆门模拟)我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?“则在该问题中,等级较高的一等人所得黄金比等级较低的九等人所得黄金A.多斤 B.少斤 C.多斤 D.少斤【答案】A【解析】设十等人得金从高到低依次,,,,则为等差数列,设公差为,则由题意可知;,,;.即等级较高的一等人所得黄金比等级较低的九等人所得黄金多斤.故选.24.(2024•衡阳一模)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制定员工的嘉奖方案:在经营利润超过6万元的前提下嘉奖,且奖金(单位:万元)随经营利润(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的.下列函数模型中,符合该点要求的是(参考数据:,A. B. C. D.【答案】D【解析】对于函数:,当时,,不符合题意;对于函数:,当时,,不符合题意;对于函数:,不满足递增,不符合题意;对于函数:,满足,,增函数,且,结合图象,与的图象如图所示:符合题意,故选.25.(2024•湖北模拟)众所周知,银行的运营方式始终是个谜,但去银行存款却又是一个非常实际的问题,所以理解清晰银行的运营方式对我们进入社会大展手脚是一个帮助.某人拟去旁边的一家银行存款,得知该银行对于数额非特殊巨大的存款有如下两种存款方案(单次存款金额不得少于100元)方案肯定期存款策略:固定存款年,年利率为,存满一年后本金与利息作为下一年的本金接着实行存款策略.若中途取出存款则会扣除全部利息并收取元依本金数额而定的手续费(从存款中扣除),详细扣费措施见附表.若一年内存在两次取出存款,则该人在这一年内将被计入不诚信档案.当该人被计入不诚信档案后,收取的手续费将增加至四倍.方案二活期存款策略:年利率为,可以随时存取款并且不扣除利息以及手续费.手续费附表存款金额的范围元手续费元4550补充内容①年利率是指,理论上存款一年后获得的利息(即银行通过利用存款人的存款资金进行理财而获得盈利后对存款人的账户相应地存入肯定数额的酬劳)与一年前的本金的比值.若存款不满一年,获得的利息将依据存款时间与一年的比值乘以利率及本金来计算.②注:表示大于等于的最小整数.如则以下说法中正确的序号组合是①若该人一年内选用定期存款存取同一笔钱共计扣除手续费95元,则他初始存入的金额小于2024元②若该人一年内选用定期存款存取同一笔钱共计扣除手续费95元,则他初始存入的金额可能为5000元③若该人要在一年后获得的利息最大,应选择方案一④若该人要在一年后获得的利息最大,应选择方案二A.①③ B.②④ C.③ D.④【答案】D【解析】设该人初始存入的金额为元,当时,手续费,当时,手续费,当时,手续费,命题①②错误;由于定期存的年利率比活期存款的年利率大,若该人要在一年后获得的利息最大,应当选择方案二,命题③错误,命题④正确.故选.26.(2024•衡阳模拟)2024年3月,国内新冠肺炎疫情得到有效限制,人们起先走出家门享受春光.某旅游景点为吸引游客,推出团体购票实惠方案如表:购票人数100以上门票叫个13元人11元人9元人两个旅游团队安排巡游该景点,若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为A.20 B.30 C.35 D.40【答案】B【解析】设两个旅游团队的人数分别为,,不能被13整除,两个旅游人数之和:,若,则11得:,①由共需支付门票费为1290元可知,,②联立①②解得:,,不符合题意;若,则9,得,③由共需支付门票费为1290元可知,,,得,④联立③④解得:人,人.这两个旅游团队的人数之差为人.故选.27.(2024•邵阳模拟)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图,充分展示了我国古代超群的音律
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础强化人教版9年级数学上册《概率初步》章节测试练习题(含答案详解)
- 2025年工业互联网平台网络安全态势感知技术安全服务市场分析报告
- 2025年工业互联网平台5G通信模组适配性产业布局研究报告
- 兴平辅警招聘考试真题2023
- 输电班组安全培训课件
- 输液穿刺致尺神经损伤课件
- 电动伸缩门产品采购与售后服务升级合同
- 券商、保险公司、投资者三方转债发行服务协议范本
- 事业单位停薪留职人员社会保险关系转移合同
- 互联网企业新职员合同与数据安全保密规范样本
- T-CALC 007-2025 重症监护病房成人患者人文关怀规范
- 土方内倒合同(2025年版)
- 《运算放大器介绍》课件
- ktv消防安全培训制度
- GB/T 44923-2024成年人三维头部模型
- GB 20072-2024乘用车后碰撞安全要求
- 新课标高中化学实验目录人教
- 【培训课件】《统计法》宣传课件 建立健全法律制度依法保障数据质量
- 九年级(上册)历史教材课后习题参考答案【人教部编版】
- 食堂日管控周排查月调度记录表
- 初中音乐教学课件走进京剧
评论
0/150
提交评论