2024年全球氢能评论Global Hydrogen Review 2024_第1页
2024年全球氢能评论Global Hydrogen Review 2024_第2页
2024年全球氢能评论Global Hydrogen Review 2024_第3页
2024年全球氢能评论Global Hydrogen Review 2024_第4页
2024年全球氢能评论Global Hydrogen Review 2024_第5页
已阅读5页,还剩290页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GlobalHydrogenReview2024

INTERNATIONALENERGYAGENCY

TheIEAexaminesthefullspectrum

ofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits

31membercountries,

13associationcountriesandbeyond.

Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.

IEAmembercountries:

AustraliaAustriaBelgiumCanada

CzechRepublicDenmarkEstonia

FinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuania

LuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugal

SlovakRepublicSpain

SwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStates

TheEuropeanCommissionalsoparticipatesintheworkoftheIEA

IEAassociationcountries:

ArgentinaBrazilChinaEgyptIndiaIndonesiaKenya

MoroccoSenegalSingaporeSouthAfricaThailand

Ukraine

Revisedversion,October2024

Informationnoticefoundat:

/corrections

Source:IEA.

InternationalEnergyAgencyWebsite:

GlobalHydrogenReview2024

Abstract

Page|

PAGE

IEA.CCBY4.0.

Abstract

TheGlobalHydrogenReviewisanannualpublicationbytheInternationalEnergyAgencythattrackshydrogenproductionanddemandworldwide,aswellasprogressincriticalareassuchasinfrastructuredevelopment,trade,policy,regulation,investmentsandinnovation.

Thereportisanoutputofthe

CleanEnergyMinisterialHydrogenInitiative

andisintendedtoinformenergysectorstakeholdersonthestatusandfutureprospectsofhydrogen.Focusingonhydrogen’spotentialroleinmeetinginternationalenergyandclimategoals,theReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologiesatthesametimeascreatingdemandforhydrogenandhydrogen-basedfuels.Itcomparesreal-worlddevelopmentswiththestatedambitionsofgovernmentandindustry.

Thisyear’sreporthasaspecialfocusonLatinAmericaandincludesanalysisonrecentdevelopmentsoflow-emissionshydrogenprojectsintheregionandhowtounlockdemandandmovetowardsprojectimplementation.Inaddition,thereportassessesindetailthegreenhousegasemissionsassociatedwithdifferenthydrogensupplychains.

GlobalHydrogenReview2024

Acknowledgements

Page|

PAGE

Acknowledgements,contributorsandcredits

TheGlobalHydrogenReviewwaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).ThestudywasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.

UweRemme(HeadoftheHydrogenandAlternativeFuelsUnit)andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.

TheprincipalIEAauthorsandcontributorswere(inalphabeticalorder):GiovanniAndrean(CCUSandgeospatialanalysis),SimonBennett(leadoninvestment),HeribBlanco(leadongreenhousegasesandpolicies;LatinAmerica),SaraBudinis(leadonCCUS),JonghoonChae(electricitygeneration),ElizabethConnelly(leadontransport),ChiaraDelmastro(leadonbuildings),StavroulaEvangelopoulou(productionanddatamanagement),MathildeFajardy(CCUS),AlexandreGouy(industry),RafaelMartinezGordon(buildings),ShaneMcDonagh(transport),MegumiKotani(policies),FrancescoPavan(leadonproductionandtrade),AmaliaPizarro(leadonLatinAmericaandinfrastructure;innovation),RichardSimon(leadonindustry)andDenizUgur(investment).

ThedevelopmentofthisreportbenefittedfromcontributionsprovidedbythefollowingIEAcolleagues:YasminaAbdelilah,AnaAlcaldeBáscones,LeonardoColina,IlkkaHannula,MartinKueppers,GabrielLeiva,QuentinMinier,PedroNinodeCarvalho,JenniferOrtizandMirkoUliano.

ValuablecommentsandfeedbackwereprovidedbyseniormanagementandothercolleagueswithintheIEA,inparticularLauraCozzi,KeisukeSadamori,TimGould,PaoloFrankl,DennisHesseling,AlessandroBlasi,andAraceliFernandezPales.

Withgreatappreciation,wethankJoergHusarandAlejandraBernalwhoprovidedessentialsupportintheengagementwithLatinAmericastakeholders.

LizzieSayereditedthemanuscriptwhileAnnaKalistaandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.

IEA.CCBY4.0.

SpecialthanksgotoProf.DetlefStoltenandhisteamatJülichSystemsAnalysis,ForschungszentrumJülich(HeidiHeinrichs,DanielRosales,ChristophWinkler,BernhardWortmann)fortheirmodelanalysisonhydrogenproductioncostsandanalyticalinputonwaterstresslevels.

GlobalHydrogenReview2024

Acknowledgements

Page|

PAGE

ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoJethroMullen,CurtisBrainard,PoeliBojorquez,JonCuster,AstridDumond,MerveErdil,LivGaunt,GraceGordon,ClaraValloisandWonjikYang.

TheworkbenefittedfromthefinancialsupportprovidedbytheGovernmentsofCanadaandJapan.ThefollowinggovernmentshavealsocontributedtothereportthroughtheirvoluntarycontributiontotheCEMHydrogenInitiative:Australia,Austria,Canada,Finland,Germany,theEuropeanCommission,theNetherlands,Norway,theUnitedKingdomandtheUnitedStates.

Specialthanksgotothefollowingorganisationsandinitiativesfortheirvaluablecontributions:AdvancedFuelCellsTCP,HydrogenCouncil,HydrogenTCP,andInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE).

IEA.CCBY4.0.

Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:NawalYousifAlhanaee,MaryamMohammedAlshamsiandAbdallaTalalAlhammadi(MinistryofEnergyandInfrastructure,UnitedArabEmirates);Abdul'AzizAliyu(GHGTCP);LaurentAntoniandNoévanHulst(IPHE);FlorianAusfelder,ThomasHildandIsabelKundler(Dechema);EstebanBarrantesVásquez(MinistryofEnvironmentandEnergy,CostaRica);FabianBarrera,MatthiasDelteil,MatthiasDeutschandLeandroJanke(AgoraEnergiewende);HamedBashiri,RobBlack,CarolineCzach,KathrynGagnon,AmandeepGarcha,EllenHandyside,AmirHanifi,OshadaMendis,CassieShang,MargaretSkwara,PhilTomlinsonandNicholeWarkotsch(NaturalResourcesCanada);LionelBoillot(EUCleanHydrogenPartnership);DavidBolsmanandAlfredMosselaar(RVO,Netherlands);PaolaBrunetto(Enel);FitzgeraldCantero(OLADE);FlorimarCeballosandRocíoValero(HydrogenTCP);PingChen(DalianInstituteofChemicalPhysics);TudorConstantinescu(DGENER,EuropeanCommission);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity);LindaDempsey(CFIndustries);LuisDiazgranadosandWouterVanhoudt(Hinicio);RobertDickinson,StuartWalshandChanglongWang(MonashUniversity);JoeDoleschal-Ridnell,DorisFujiandShirleyOliveira(BP);RobertFischer(SWEA);TudorFlorea(MinistryofEcologicalTransition,France);AlexandruFloristean(Hy24);DanielFraile(HydrogenEurope);MatiasGarcía(MinistryofEnergy,Chile);EricC.Gaucher(LavoisierH2Ceoconsult);DolfGielen,CarolinaLopezRochaandSimonaSulikova(WorldBank);CelineLeGoazigo(WBCSD);JeffreyGoldmeerandKanikaTayal(GEVernova);MariaJoseGonzalezandMartínScarone(MinistryofIndustry,EnergyandMines,Uruguay);MarineGorner,JulianHoelzenandFrédériqueRigal(Airbus);PatrickGraichen(Independent);EmileHerben(Yara);StephanHerbstandKoichiNumata(Toyota);YoshinariHiki(ENEOS);KenjiIshizawa(IHICorporation);SteveJames(MinistryofBusiness,Innovation&Employment,NewZealand);NicolasJensen(TES);ConnorKerrandTJKirk(RockyMountainInstitute);IlhanKim(MinistryofTrade,

IEA.CCBY4.0.

IndustryandEnergy,Korea);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);LeifChristianKröger(ThyssenkruppNucera);ThomasKwan(SchneiderElectric);PierreLaboué(FranceHydrogène);MartinLambert(OxfordInstituteforEnergyStudies);WilcovanderLans(PortofRotterdamAuthority);FranciscoLaveron(Iberdrola);FranzLehnerandJanStelter(NOWGmbH);MichaelLeibrandt(FederalMinistryforEconomicAffairsandClimateAction,Germany);PaulLuccheseandJulieMougin(CEA);AlbertoDiLullo,AndreaDiStefanoandAndreaPisano(Eni);ConstanzaMeneses(H2LAC);MatteoMicheliandAndreaTriki(GermanEnergyAgency);SusanaMoreira(H2Global-HINT.Co);PatriciaNaccache(MinistryofMinesandEnergyofBrazil);MasashiNagai(Chiyoda);MotohikoNishimura(KawasakiHeavyIndustries);MaríaTeresaNonayDomingo(Enagás);ArielPérez(Hychico);CédricPhilibert(Independent);AndrewPurvis(WorldSteelAssociation);CarlaRobledoandDouweRoest(MinistryofEconomicAffairsandClimate,theNetherlands);AgustínRodríguezRiccio(Topsoe);XavierRousseau(Snam);SunitaSatyapal,JacobEnglander,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);SophieSauerteig(DepartmentforEnergySecurityandNetZero,UnitedKingdom);RobertSchouwenaar(Shell);GuillaumeDeSmedt(AirLiquide);MichaelSmith(DepartmentofClimateChange,Energy,theEnvironmentandWater,Australia);MatthijsSoede(DGR&I,EuropeanCommission);UrszulaSzalkowska(EcoEngineers);KenjiTakahashi(JERA);AndreiTchouvelev(ISO);DenisThomas(AccelerabyCummins);TatianaVilarinhoFranco(FortescueFutureIndustries);MarcelWeeda(TNO);JoeWilliams(GreenHydrogenOrganisation);JuanCamiloZapata(MinistryofMinesandEnergy,Colombia).

GlobalHydrogenReview2024

Tableofcontents

Page|

PAGE

Tableofcontents

Executivesummary 9

Recommendations 14

GlobalHydrogenReviewSummaryProgress 16

Chapter1.Introduction 17

Overview 17

TheCEMHydrogenInitiative 18

Chapter2.Hydrogendemand 20

Highlights 20

Overviewandoutlook 21

Refining 28

Industry 32

Transport 37

Buildings 53

Electricitygeneration 54

Chapter3.Hydrogenproduction 59

Highlights 59

Overviewandoutlook 60

Electrolysis 66

FossilfuelswithCCUS 78

Comparisonofdifferentproductionroutes 81

Emergingproductionroutes 94

Hydrogen-basedfuelsandfeedstock 99

Chapter4.Tradeandinfrastructure 104

Highlights 104

Overview 105

Statusandoutlookofhydrogentrade 105

Statusandoutlookofhydrogeninfrastructure 113

Chapter5.Investment,financeandinnovation 135

Highlights 135

Investmentinthehydrogensector 136

Innovationinhydrogentechnologies 150

Chapter6.Policies 163

Highlights 163

Overview 164

IEA.CCBY4.0.

Strategiesandtargets 166

IEA.CCBY4.0.

Demandcreation 172

Mitigationofinvestmentrisks 178

PromotionofRD&D,innovationandknowledge-sharing 190

Certification,standards,regulations 194

Chapter7.GHGemissionsofhydrogenanditsderivatives 203

Highlights 203

Overview 204

Systemboundariesandscopeofemissions 206

Emissionsintensitiesofhydrogenproductionroutes 208

Emissionsintensitiesofammoniaproductionroutes 215

Emissionsintensitiesof(re)conversionandshippingofhydrogencarriers 216

Emissionsintensityofcarbon-containinghydrogen-basedfuels 223

EffectoftemporalcorrelationonGHGemissions 230

Chapter8.LatinAmericainfocus 234

Highlights 234

Unlockingthepotentialoflow-emissionshydrogeninLatinAmericaandtheCaribbean 235

Overview 237

Low-emissionshydrogenproduction 242

Low-emissionshydrogendemand 247

Movingtowardsimplementation 269

Annex 287

Explanatorynotes 287

Abbreviationsandacronyms 289

GlobalHydrogenReview2024

Executivesummary

Page|

PAGE

Executivesummary

Moreprojectsandmorefinalinvestmentdecisions,butsetbackspersist

Globalhydrogendemandreached97Mtin2023,anincreaseof2.5%comparedto2022.Demandremainsconcentratedinrefiningandthechemicalsector,andisprincipallycoveredbyhydrogenproducedfromunabatedfossilfuels.Asinpreviousyears,low-emissionshydrogenplayedonlyamarginalrole,withproductionoflessthan1Mtin2023.However,low-emissionshydrogenproductioncouldreach49Mtpaby2030basedonannouncedprojects,almost30%morethanwhentheGlobalHydrogenReview2023wasreleased.Thisstronggrowthhasbeenmostlydrivenbyelectrolysisprojects,withannouncedelectrolysiscapacityamountingtoalmost520GW.Thenumberofprojectsthathavereachedafinalinvestmentdecision(FID)isalsogrowing:AnnouncedproductionthathastakenFIDdoubledcomparedwithlastyeartoreach3.4Mtpa,representingafivefoldincreaseontoday’sproductionby2030.Thisissplitroughlyevenlybetweenelectrolysis(1.9Mtpa)andfossilfuelswithcarboncapture,utilisationandstorage(CCUS)(1.5Mtpa).

HydrogenproductionfromfossilfuelswithCCUShasgainedgroundoverthepastyear–althoughthetotalpotentialproductionfromannouncedprojectsgrewonlymarginallycomparedwithlastyear,therewereseveralFIDsforpreviouslyannouncedlarge-scaleprojects,allofwhicharelocatedinNorthAmericaandEurope.Asaresult,thepotentialproductionin2030fromprojectsusingfossilfuelswithCCUSthathavetakenFIDmorethandoubledinthelastyear,from

0.6MtpainSeptember2023to1.5Mtpatoday.

IEA.CCBY4.0.

Overall,thisisnoteworthyprogressforanascentsector,butmostofthepotentialproductionisstillinplanningoratevenearlierstages.Forthefullprojectpipelinetomaterialise,thesectorwouldneedtogrowatanunprecedentedcompoundannualgrowthrateofover90%from2024until2030,wellabovethegrowthexperiencedbysolarPVduringitsfastestexpansionphases.Severalprojectshavefaceddelaysandcancellations,whichareputtingatriskasignificantpartoftheprojectpipeline.Themainreasonsincludeuncleardemandsignals,financinghurdles,delaystoincentives,regulatoryuncertainties,licensingandpermittingissuesandoperationalchallenges.

GlobalHydrogenReview2024

Executivesummary

Mapofannouncedlow-emissionshydrogenproductionprojects,2024

Source:IEA

HydrogenProjectsdatabase

(October2024).

Chinaandelectrolysers–thesequeltosolarPVandbatteries?

AnnouncedelectrolysercapacitythathasreachedFIDnowstandsat20GWglobally,ofwhich6.5GWreachedFIDoverthelast12monthsalone.Chinaisstrengtheningitsleadership,accountingformorethan40%ofglobalFIDsincapacitytermsoverthesameperiod.China’sfront-runningpositionisbackedbyitsstrengthinthemassmanufacturingofcleanenergytechnologies:itishometo60%ofglobalelectrolysermanufacturingcapacity.China’scontinuedexpansionofmanufacturingcapacityisexpectedtodrivedownelectrolysercosts,ashasoccurredwithsolarPVandbatterymanufacturinginthepast.Moreover,severallargeChinesemanufacturersofsolarpanelshaveenteredthebusinessofmanufacturingelectrolysers,andtodaytheyaccountforaroundone-thirdofChina’selectrolysermanufacturingcapacity.However,otherregionsarealsosteppingupefforts:inEurope,FIDsforelectrolysisprojectsquadrupledoverthelastyeartoreachmorethan2GW,whileIndiahasemergedasoneofthekeyplayersthankstoasingleFIDfor1.3GW.

IEA.CCBY4.0.

PAGE|10

GlobalHydrogenReview2024

Executivesummary

Technologyinnovationismakingheadway,withsignspointingtoacceleratedprogressinthenearterm

GovernmentinvestmentinhydrogentechnologyRD&Dhasbeengrowingsince2016,andthiseffortisstartingtobearfruit.Todate,progresshasoccurredmostlyonthesupplyside,andnumeroustechnologiesareeitheralreadycommerciallyavailableorclosetothispoint.Promisingresultsarealsobeingseenforend-usetechnologies,withseveralapplicationsinindustryandelectricitygenerationreachingdemonstrationstage,aswellassignificantprogressintransportapplications,particularlyintheshippingsector.Inaddition,thenumberofpatentapplicationsleaptup47%in2022,withmostofthegrowthcomingfromtechnologiesthatareprimarilymotivatedbyclimatechangeconcerns.IncreasedactivityaroundpatentingsuggeststhatadditionalpublicfundingforR&Dandgrowingconfidenceinfuturemarketopportunities,backedbysupportivepolicies,arestimulatingmorenewideasandproductdesignswithcommercialpotential.

Low-emissionshydrogenwillremainexpensiveintheshortterm,butcostsareexpectedtofallsignificantly

Low-emissionshydrogenisanemergingsectorand,assuch,thereisuncertaintyaboutcosts.Today’selectrolysercostshavebeenrevisedupwardsforthisreport,basedonnewlyavailabledatafrommoreadvancedprojects.Thefuturecostevolutionwilldependonnumerousfactors,suchastechnologydevelopment,andparticularlyonthelevelandpaceofdeployment.WiththedeploymentseenintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario),thecostoflow-emissionshydrogenproductionfromrenewableelectricityfallstoUSD2-9/kgH2by2030–halfoftoday’svalue–withthecostgapwithunabatedfossil-basedproductionshrinkingfromUSD1.5-8/kgH2todaytoUSD1-3/kgH2by2030.DeploymentlevelsintheStatedPoliciesScenario(whichconsidersexistingpoliciesonly)meanthatthecostrangewouldfallonlyaround30%.Asnaturalgaspricesfallinmanyregions,low-emissionshydrogenproductionfromnaturalgaswithCCUSisalsosettoexperiencecostreductions.

Costreductionswillbenefitallprojects,buttheimpactonthecompetitivenessofindividualprojectswillvary.Forexample,fulldevelopmentoftheentireelectrolyserprojectpipelineofalmost520GWwouldachievesimilarglobalcostreductionsasintheNZEScenario.InChina,globaldeploymentatsuchalevelwouldmeanthatthevastmajorityoftheproductionfromitscurrentelectrolyserprojectpipeline(1Mtpa)wouldbecheaperthanhydrogenproducedfromunabatedcoal.Globally,by2030,morethan5Mtpacouldbeproducedatacostcompetitivewithproductionfromunabatedfossilfuels,andupto12MtpawithacostpremiumofUSD1.5/kgH2.

IEA.CCBY4.0.

PAGE|11

GlobalHydrogenReview2024

Executivesummary

Thiscostgapwillremainanimportantchallengeintheshorttermforprojectdevelopers,butforfinalproductsforwhichhydrogenisanintermediatefeedstock,theimpactislikelytobemanageableinmanycases.Thecostpremiumoflow-emissionshydrogenproductiondecreasesalongthevaluechain,meaningthatconsumersoftenseeonlyamodestpriceincreaseinfinalproducts.Forexample,usingsteelproducedwithrenewablehydrogentodayintheproductionofelectricvehicles(EVs)wouldincreasethetotalpriceofanEVbyaround1%.

Progressisbeingmadeincreatingdemandforlow-emissionshydrogen,butthisstillneedstoscaleup

Effortstostimulatedemandforlow-emissionshydrogen(andhydrogen-basedfuels)arenowgainingtractionasgovernmentsbeginimplementingkeypolicies(suchasCarbonContractsforDifferenceinGermanyandtheEUmandatesinaviationandshipping).Thesemeasureshavealsotriggeredactionontheindustryside,withagrowingnumberofofftakeagreementssignedandthelaunchoftenderstopurchaselow-emissionshydrogen.However,theoverallscaleoftheseeffortsremainsinadequateforhydrogentocontributetomeetingclimategoals.

Policiesandtargetsforhydrogendemandsetbygovernmentsadduptoaround11Mtin2030,nearly3Mtlowerthanlastyearduetothedownwardrevisionsofsometargetsforhydrogenuseinindustry,transportandpowergeneration.Yettheamountoflow-emissionshydrogenproductionthathastakenFID(3.4Mtpa)orisalreadyoperational(0.7Mtpa),at4Mtpa,iswellbelowthatlevel.Thegapconstitutesacallforactiontoindustryandgovernmentstofacilitateofftakeagreementsthatcanhelpunlockinvestmentonthesupplyside.

Atthesametime,governmentpoliciesandtargetsfordemandarewellbehindtheproductiontargetsbygovernments(whichaddupto43Mtpain2030)andareevenlowerthanthepotentialsupplythatcouldbeachievedfromannouncedprojects(49Mtpa).Policymeasuresarestillinsufficienttocreatethelevelofdemandneededtoscaleupproductiontomeetgovernmentexpectations.Inaddition,somemoreambitiousactions(liketheEUtargetsinindustryapplicationsortherefiningquotasinIndia)havenotyetbeentranslatedintonationallegislation.Moreover,fromthearoundUSD100billionofpolicysupportforlow-emissionshydrogenadoptionannouncedbygovernmentsoverthepastyear,supportonthesupplysideis50%largerthanonthedemandside.Strongergovernmentactionwillbeneededtostimulatedemandforlow-emissionshydrogenasanessentialrequirementtounderpininvestmentsonthesupplyside.Industrialhubs,wherelow-emissionshydrogencouldreplacetheexistinglargedemandforhydrogenmettodaybyunabatedfossilfuels,remainanimportantuntappedopportunityforgovernmentstostimulatedemand.

IEA.CCBY4.0.

PAGE|12

GlobalHydrogenReview2024

Executivesummary

Thenextstepsforcertificationandmutualrecognition

Governmentsareacceleratingthedevelopmentofregulationsontheenvironmentalattributesoflow-emissionshydrogen,particularlyregardinggreenhousegas(GHG)emissions.Clearandpredictableregulationscanstrengthencertaintyforlong-terminvestments.Yettheseframeworks,andtheassociatedcertificationschemes,remainunalignedacrossdifferentregions,creatingpotentialformarketfragmentation.Inresponse,atCOP28,37governmentscommittedtomutualrecognitionofnationalcertificationschemes,whileLatinAmericalaunched“CertHiLAC”,aregionalcertificationframework.Inaddition,theInternationalOrganizationforStandardization(ISO)hasreleasedamethodologyfordeterminingGHGemissionsassociatedwithhydrogenproduction,transportandconversion/reconversion.Thiswillbethebasisforafullstandardexpectedby2025or2026,whichcouldserveasacommonmethodologytoenablethemutualrecognitionofcertificates.However,somequestionsrelatedtotheassessmentofGHGemissionsinhydrogensupplychainsremainunresolved,suchashowtoaccountforemissionsfromtheconstructionandmanufacturingofproductionassets.Inthecaseoffossil-basedproduction,thereisaneedforbetterdataonupstreamandmidstreamemissionsoffossilfuelsupplyavailableinnationalinventoriesinordertoensurerobustassessmentoftheGHGemissionsassociatedwiththeseproductionroutes.

HydrogencanbeanopportunityforLatinAmericainthenewenergyeconomy,butisfacingchallenges

Thisyear’sreportincludesaspecialfocusonLatinAmericaandtheCaribbean,followingthelaunchoftheIEA’sLatinAmericaEnergyOutlookin2023.LatinAmericaiswell-positionedtoemergeasamajorproduceroflow-emissionshydrogen,capitalisingonitsabundantnaturalandrenewableenergyresourcesandlargelydecarbonisedelectricitymix.Basedonannouncedprojects,by2030,LatinAmericacouldproducemorethan7Mtpaofhydrogenwithacarbonintensitybelow3kgCO2-eq/kgH2(3-4timeslowerthanusingunabatednaturalgas),inlinewiththerequirementsofseveralexistingregulationsaroundtheworld(e.g.theEUTaxonomy,Japan’sHydrogenSocietyPromotionActandtheUSCleanHydrogenProductionStandard).However,achievingthispotentialinfullwouldrequireasignificantincreaseinelectricitygenerationcapacity–equivalentto20%oftheregion’scurrentpoweroutput–andsubstantialinvestmentsinenablinginfrastructure,suchastransmissionlines.

ManyLatinAmericancountriesalreadyhavehydrogenstrategieswithastrongfocusonexportopportunities.However,theseplansmayneedtobeupdatedinlightofuncertaintyaboutthesizeoftheglobalhydrogenmarket.Atthegloballevel,therehasbeennogrowthinannouncedprojectslinkedtotradeofhydrogenandhydrogen-basedfuelsinthepastyear,suggestingthatprojectdevelopers

IEA.CCBY4.0.

PAGE|13

GlobalHydrogenReview2024

Executivesummary

haveinsteadfocusedondomesticopportunities.InthecaseofLatinAmerica,theseopportunitiesaremostlyinrefiningandammoniaproduction,whichofferimmediatelarge-scaleapplications.Inthecaseofammonia,developingdomesticproductioncapacitieswouldhelptoreduceimportdependencyforfertilisersinaregionwhereagriculturemakesasignificantcontributiontonationalgrossdomesticproduct.

Asthemarketdevelops,newapplicationsinsteel,shippingandaviationwillemerge,togetherwiththeestablishmentofhydrogenhubs.Thesehubscanopenanopportunitytoscaleuphydrogenuseandproductionfordomesticneeds,whilealsoprovidingtheopportunitytoexporthydrogen-basedfuels,aswellasmaterialsproducedwithlow-emissionshydrogen,suchashotbriquettediron,allowingcountriesthataretodaylargeexportersofironore,likeBrazil,todevelopnewindustrialcapacitiesandscaleupinthevaluechain.Aphasedapproachtosupplyintheregion,startingwithsmaller-scaleprojects,willhelpmitigaterisks,reducecapitalinvestment,andprovidevaluableexperienceforscalingupinthefuture.Infrastructureplanninganddevelopment,especiallyinlong-leadprojectslikepowertransmission,shouldbeginimmediatelytosupportfuturehydrogenproduction.

Recommendations

Acceleratedemandcreationforlow-emissionshydrogenbyleveragingindustrialhubsandpublicprocurement

Governmentsshouldtakebolderactiontostimulatedemandforlow-emissionshydrogen.Theimplementationofpoliciessuchasquotas,mandatesandcarboncontractsfordifferencehasalreadystarted,butremainslimitedingeographicalcoverageandscale.Governmentscancapitaliseontheopportunityofferedbyexistinghydrogenusersandhigh-valuesectorssuchassteel,shippingandaviation,whichareoftenco-locatedinindustrialhubs.Poolingdemandinthesehubscancreatescaleandreduceofftakerisksforproducers.Additionally,makinguseofpublicprocurementforfinalproductsthatconsumelow-emissionshydrogenintheirproduction,andencouragingthedevelopmentofmarketswhereconsumersare

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论