版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GlobalHydrogenReview2024
INTERNATIONALENERGYAGENCY
TheIEAexaminesthefullspectrum
ofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits
31membercountries,
13associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
IEAmembercountries:
AustraliaAustriaBelgiumCanada
CzechRepublicDenmarkEstonia
FinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuania
LuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugal
SlovakRepublicSpain
SwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStates
TheEuropeanCommissionalsoparticipatesintheworkoftheIEA
IEAassociationcountries:
ArgentinaBrazilChinaEgyptIndiaIndonesiaKenya
MoroccoSenegalSingaporeSouthAfricaThailand
Ukraine
Revisedversion,October2024
Informationnoticefoundat:
/corrections
Source:IEA.
InternationalEnergyAgencyWebsite:
GlobalHydrogenReview2024
Abstract
Page|
PAGE
IEA.CCBY4.0.
Abstract
TheGlobalHydrogenReviewisanannualpublicationbytheInternationalEnergyAgencythattrackshydrogenproductionanddemandworldwide,aswellasprogressincriticalareassuchasinfrastructuredevelopment,trade,policy,regulation,investmentsandinnovation.
Thereportisanoutputofthe
CleanEnergyMinisterialHydrogenInitiative
andisintendedtoinformenergysectorstakeholdersonthestatusandfutureprospectsofhydrogen.Focusingonhydrogen’spotentialroleinmeetinginternationalenergyandclimategoals,theReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologiesatthesametimeascreatingdemandforhydrogenandhydrogen-basedfuels.Itcomparesreal-worlddevelopmentswiththestatedambitionsofgovernmentandindustry.
Thisyear’sreporthasaspecialfocusonLatinAmericaandincludesanalysisonrecentdevelopmentsoflow-emissionshydrogenprojectsintheregionandhowtounlockdemandandmovetowardsprojectimplementation.Inaddition,thereportassessesindetailthegreenhousegasemissionsassociatedwithdifferenthydrogensupplychains.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
Acknowledgements,contributorsandcredits
TheGlobalHydrogenReviewwaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).ThestudywasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.
UweRemme(HeadoftheHydrogenandAlternativeFuelsUnit)andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorsandcontributorswere(inalphabeticalorder):GiovanniAndrean(CCUSandgeospatialanalysis),SimonBennett(leadoninvestment),HeribBlanco(leadongreenhousegasesandpolicies;LatinAmerica),SaraBudinis(leadonCCUS),JonghoonChae(electricitygeneration),ElizabethConnelly(leadontransport),ChiaraDelmastro(leadonbuildings),StavroulaEvangelopoulou(productionanddatamanagement),MathildeFajardy(CCUS),AlexandreGouy(industry),RafaelMartinezGordon(buildings),ShaneMcDonagh(transport),MegumiKotani(policies),FrancescoPavan(leadonproductionandtrade),AmaliaPizarro(leadonLatinAmericaandinfrastructure;innovation),RichardSimon(leadonindustry)andDenizUgur(investment).
ThedevelopmentofthisreportbenefittedfromcontributionsprovidedbythefollowingIEAcolleagues:YasminaAbdelilah,AnaAlcaldeBáscones,LeonardoColina,IlkkaHannula,MartinKueppers,GabrielLeiva,QuentinMinier,PedroNinodeCarvalho,JenniferOrtizandMirkoUliano.
ValuablecommentsandfeedbackwereprovidedbyseniormanagementandothercolleagueswithintheIEA,inparticularLauraCozzi,KeisukeSadamori,TimGould,PaoloFrankl,DennisHesseling,AlessandroBlasi,andAraceliFernandezPales.
Withgreatappreciation,wethankJoergHusarandAlejandraBernalwhoprovidedessentialsupportintheengagementwithLatinAmericastakeholders.
LizzieSayereditedthemanuscriptwhileAnnaKalistaandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.
IEA.CCBY4.0.
SpecialthanksgotoProf.DetlefStoltenandhisteamatJülichSystemsAnalysis,ForschungszentrumJülich(HeidiHeinrichs,DanielRosales,ChristophWinkler,BernhardWortmann)fortheirmodelanalysisonhydrogenproductioncostsandanalyticalinputonwaterstresslevels.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoJethroMullen,CurtisBrainard,PoeliBojorquez,JonCuster,AstridDumond,MerveErdil,LivGaunt,GraceGordon,ClaraValloisandWonjikYang.
TheworkbenefittedfromthefinancialsupportprovidedbytheGovernmentsofCanadaandJapan.ThefollowinggovernmentshavealsocontributedtothereportthroughtheirvoluntarycontributiontotheCEMHydrogenInitiative:Australia,Austria,Canada,Finland,Germany,theEuropeanCommission,theNetherlands,Norway,theUnitedKingdomandtheUnitedStates.
Specialthanksgotothefollowingorganisationsandinitiativesfortheirvaluablecontributions:AdvancedFuelCellsTCP,HydrogenCouncil,HydrogenTCP,andInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE).
IEA.CCBY4.0.
Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:NawalYousifAlhanaee,MaryamMohammedAlshamsiandAbdallaTalalAlhammadi(MinistryofEnergyandInfrastructure,UnitedArabEmirates);Abdul'AzizAliyu(GHGTCP);LaurentAntoniandNoévanHulst(IPHE);FlorianAusfelder,ThomasHildandIsabelKundler(Dechema);EstebanBarrantesVásquez(MinistryofEnvironmentandEnergy,CostaRica);FabianBarrera,MatthiasDelteil,MatthiasDeutschandLeandroJanke(AgoraEnergiewende);HamedBashiri,RobBlack,CarolineCzach,KathrynGagnon,AmandeepGarcha,EllenHandyside,AmirHanifi,OshadaMendis,CassieShang,MargaretSkwara,PhilTomlinsonandNicholeWarkotsch(NaturalResourcesCanada);LionelBoillot(EUCleanHydrogenPartnership);DavidBolsmanandAlfredMosselaar(RVO,Netherlands);PaolaBrunetto(Enel);FitzgeraldCantero(OLADE);FlorimarCeballosandRocíoValero(HydrogenTCP);PingChen(DalianInstituteofChemicalPhysics);TudorConstantinescu(DGENER,EuropeanCommission);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity);LindaDempsey(CFIndustries);LuisDiazgranadosandWouterVanhoudt(Hinicio);RobertDickinson,StuartWalshandChanglongWang(MonashUniversity);JoeDoleschal-Ridnell,DorisFujiandShirleyOliveira(BP);RobertFischer(SWEA);TudorFlorea(MinistryofEcologicalTransition,France);AlexandruFloristean(Hy24);DanielFraile(HydrogenEurope);MatiasGarcía(MinistryofEnergy,Chile);EricC.Gaucher(LavoisierH2Ceoconsult);DolfGielen,CarolinaLopezRochaandSimonaSulikova(WorldBank);CelineLeGoazigo(WBCSD);JeffreyGoldmeerandKanikaTayal(GEVernova);MariaJoseGonzalezandMartínScarone(MinistryofIndustry,EnergyandMines,Uruguay);MarineGorner,JulianHoelzenandFrédériqueRigal(Airbus);PatrickGraichen(Independent);EmileHerben(Yara);StephanHerbstandKoichiNumata(Toyota);YoshinariHiki(ENEOS);KenjiIshizawa(IHICorporation);SteveJames(MinistryofBusiness,Innovation&Employment,NewZealand);NicolasJensen(TES);ConnorKerrandTJKirk(RockyMountainInstitute);IlhanKim(MinistryofTrade,
IEA.CCBY4.0.
IndustryandEnergy,Korea);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);LeifChristianKröger(ThyssenkruppNucera);ThomasKwan(SchneiderElectric);PierreLaboué(FranceHydrogène);MartinLambert(OxfordInstituteforEnergyStudies);WilcovanderLans(PortofRotterdamAuthority);FranciscoLaveron(Iberdrola);FranzLehnerandJanStelter(NOWGmbH);MichaelLeibrandt(FederalMinistryforEconomicAffairsandClimateAction,Germany);PaulLuccheseandJulieMougin(CEA);AlbertoDiLullo,AndreaDiStefanoandAndreaPisano(Eni);ConstanzaMeneses(H2LAC);MatteoMicheliandAndreaTriki(GermanEnergyAgency);SusanaMoreira(H2Global-HINT.Co);PatriciaNaccache(MinistryofMinesandEnergyofBrazil);MasashiNagai(Chiyoda);MotohikoNishimura(KawasakiHeavyIndustries);MaríaTeresaNonayDomingo(Enagás);ArielPérez(Hychico);CédricPhilibert(Independent);AndrewPurvis(WorldSteelAssociation);CarlaRobledoandDouweRoest(MinistryofEconomicAffairsandClimate,theNetherlands);AgustínRodríguezRiccio(Topsoe);XavierRousseau(Snam);SunitaSatyapal,JacobEnglander,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);SophieSauerteig(DepartmentforEnergySecurityandNetZero,UnitedKingdom);RobertSchouwenaar(Shell);GuillaumeDeSmedt(AirLiquide);MichaelSmith(DepartmentofClimateChange,Energy,theEnvironmentandWater,Australia);MatthijsSoede(DGR&I,EuropeanCommission);UrszulaSzalkowska(EcoEngineers);KenjiTakahashi(JERA);AndreiTchouvelev(ISO);DenisThomas(AccelerabyCummins);TatianaVilarinhoFranco(FortescueFutureIndustries);MarcelWeeda(TNO);JoeWilliams(GreenHydrogenOrganisation);JuanCamiloZapata(MinistryofMinesandEnergy,Colombia).
GlobalHydrogenReview2024
Tableofcontents
Page|
PAGE
Tableofcontents
Executivesummary 9
Recommendations 14
GlobalHydrogenReviewSummaryProgress 16
Chapter1.Introduction 17
Overview 17
TheCEMHydrogenInitiative 18
Chapter2.Hydrogendemand 20
Highlights 20
Overviewandoutlook 21
Refining 28
Industry 32
Transport 37
Buildings 53
Electricitygeneration 54
Chapter3.Hydrogenproduction 59
Highlights 59
Overviewandoutlook 60
Electrolysis 66
FossilfuelswithCCUS 78
Comparisonofdifferentproductionroutes 81
Emergingproductionroutes 94
Hydrogen-basedfuelsandfeedstock 99
Chapter4.Tradeandinfrastructure 104
Highlights 104
Overview 105
Statusandoutlookofhydrogentrade 105
Statusandoutlookofhydrogeninfrastructure 113
Chapter5.Investment,financeandinnovation 135
Highlights 135
Investmentinthehydrogensector 136
Innovationinhydrogentechnologies 150
Chapter6.Policies 163
Highlights 163
Overview 164
IEA.CCBY4.0.
Strategiesandtargets 166
IEA.CCBY4.0.
Demandcreation 172
Mitigationofinvestmentrisks 178
PromotionofRD&D,innovationandknowledge-sharing 190
Certification,standards,regulations 194
Chapter7.GHGemissionsofhydrogenanditsderivatives 203
Highlights 203
Overview 204
Systemboundariesandscopeofemissions 206
Emissionsintensitiesofhydrogenproductionroutes 208
Emissionsintensitiesofammoniaproductionroutes 215
Emissionsintensitiesof(re)conversionandshippingofhydrogencarriers 216
Emissionsintensityofcarbon-containinghydrogen-basedfuels 223
EffectoftemporalcorrelationonGHGemissions 230
Chapter8.LatinAmericainfocus 234
Highlights 234
Unlockingthepotentialoflow-emissionshydrogeninLatinAmericaandtheCaribbean 235
Overview 237
Low-emissionshydrogenproduction 242
Low-emissionshydrogendemand 247
Movingtowardsimplementation 269
Annex 287
Explanatorynotes 287
Abbreviationsandacronyms 289
GlobalHydrogenReview2024
Executivesummary
Page|
PAGE
Executivesummary
Moreprojectsandmorefinalinvestmentdecisions,butsetbackspersist
Globalhydrogendemandreached97Mtin2023,anincreaseof2.5%comparedto2022.Demandremainsconcentratedinrefiningandthechemicalsector,andisprincipallycoveredbyhydrogenproducedfromunabatedfossilfuels.Asinpreviousyears,low-emissionshydrogenplayedonlyamarginalrole,withproductionoflessthan1Mtin2023.However,low-emissionshydrogenproductioncouldreach49Mtpaby2030basedonannouncedprojects,almost30%morethanwhentheGlobalHydrogenReview2023wasreleased.Thisstronggrowthhasbeenmostlydrivenbyelectrolysisprojects,withannouncedelectrolysiscapacityamountingtoalmost520GW.Thenumberofprojectsthathavereachedafinalinvestmentdecision(FID)isalsogrowing:AnnouncedproductionthathastakenFIDdoubledcomparedwithlastyeartoreach3.4Mtpa,representingafivefoldincreaseontoday’sproductionby2030.Thisissplitroughlyevenlybetweenelectrolysis(1.9Mtpa)andfossilfuelswithcarboncapture,utilisationandstorage(CCUS)(1.5Mtpa).
HydrogenproductionfromfossilfuelswithCCUShasgainedgroundoverthepastyear–althoughthetotalpotentialproductionfromannouncedprojectsgrewonlymarginallycomparedwithlastyear,therewereseveralFIDsforpreviouslyannouncedlarge-scaleprojects,allofwhicharelocatedinNorthAmericaandEurope.Asaresult,thepotentialproductionin2030fromprojectsusingfossilfuelswithCCUSthathavetakenFIDmorethandoubledinthelastyear,from
0.6MtpainSeptember2023to1.5Mtpatoday.
IEA.CCBY4.0.
Overall,thisisnoteworthyprogressforanascentsector,butmostofthepotentialproductionisstillinplanningoratevenearlierstages.Forthefullprojectpipelinetomaterialise,thesectorwouldneedtogrowatanunprecedentedcompoundannualgrowthrateofover90%from2024until2030,wellabovethegrowthexperiencedbysolarPVduringitsfastestexpansionphases.Severalprojectshavefaceddelaysandcancellations,whichareputtingatriskasignificantpartoftheprojectpipeline.Themainreasonsincludeuncleardemandsignals,financinghurdles,delaystoincentives,regulatoryuncertainties,licensingandpermittingissuesandoperationalchallenges.
GlobalHydrogenReview2024
Executivesummary
Mapofannouncedlow-emissionshydrogenproductionprojects,2024
Source:IEA
HydrogenProjectsdatabase
(October2024).
Chinaandelectrolysers–thesequeltosolarPVandbatteries?
AnnouncedelectrolysercapacitythathasreachedFIDnowstandsat20GWglobally,ofwhich6.5GWreachedFIDoverthelast12monthsalone.Chinaisstrengtheningitsleadership,accountingformorethan40%ofglobalFIDsincapacitytermsoverthesameperiod.China’sfront-runningpositionisbackedbyitsstrengthinthemassmanufacturingofcleanenergytechnologies:itishometo60%ofglobalelectrolysermanufacturingcapacity.China’scontinuedexpansionofmanufacturingcapacityisexpectedtodrivedownelectrolysercosts,ashasoccurredwithsolarPVandbatterymanufacturinginthepast.Moreover,severallargeChinesemanufacturersofsolarpanelshaveenteredthebusinessofmanufacturingelectrolysers,andtodaytheyaccountforaroundone-thirdofChina’selectrolysermanufacturingcapacity.However,otherregionsarealsosteppingupefforts:inEurope,FIDsforelectrolysisprojectsquadrupledoverthelastyeartoreachmorethan2GW,whileIndiahasemergedasoneofthekeyplayersthankstoasingleFIDfor1.3GW.
IEA.CCBY4.0.
PAGE|10
GlobalHydrogenReview2024
Executivesummary
Technologyinnovationismakingheadway,withsignspointingtoacceleratedprogressinthenearterm
GovernmentinvestmentinhydrogentechnologyRD&Dhasbeengrowingsince2016,andthiseffortisstartingtobearfruit.Todate,progresshasoccurredmostlyonthesupplyside,andnumeroustechnologiesareeitheralreadycommerciallyavailableorclosetothispoint.Promisingresultsarealsobeingseenforend-usetechnologies,withseveralapplicationsinindustryandelectricitygenerationreachingdemonstrationstage,aswellassignificantprogressintransportapplications,particularlyintheshippingsector.Inaddition,thenumberofpatentapplicationsleaptup47%in2022,withmostofthegrowthcomingfromtechnologiesthatareprimarilymotivatedbyclimatechangeconcerns.IncreasedactivityaroundpatentingsuggeststhatadditionalpublicfundingforR&Dandgrowingconfidenceinfuturemarketopportunities,backedbysupportivepolicies,arestimulatingmorenewideasandproductdesignswithcommercialpotential.
Low-emissionshydrogenwillremainexpensiveintheshortterm,butcostsareexpectedtofallsignificantly
Low-emissionshydrogenisanemergingsectorand,assuch,thereisuncertaintyaboutcosts.Today’selectrolysercostshavebeenrevisedupwardsforthisreport,basedonnewlyavailabledatafrommoreadvancedprojects.Thefuturecostevolutionwilldependonnumerousfactors,suchastechnologydevelopment,andparticularlyonthelevelandpaceofdeployment.WiththedeploymentseenintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario),thecostoflow-emissionshydrogenproductionfromrenewableelectricityfallstoUSD2-9/kgH2by2030–halfoftoday’svalue–withthecostgapwithunabatedfossil-basedproductionshrinkingfromUSD1.5-8/kgH2todaytoUSD1-3/kgH2by2030.DeploymentlevelsintheStatedPoliciesScenario(whichconsidersexistingpoliciesonly)meanthatthecostrangewouldfallonlyaround30%.Asnaturalgaspricesfallinmanyregions,low-emissionshydrogenproductionfromnaturalgaswithCCUSisalsosettoexperiencecostreductions.
Costreductionswillbenefitallprojects,buttheimpactonthecompetitivenessofindividualprojectswillvary.Forexample,fulldevelopmentoftheentireelectrolyserprojectpipelineofalmost520GWwouldachievesimilarglobalcostreductionsasintheNZEScenario.InChina,globaldeploymentatsuchalevelwouldmeanthatthevastmajorityoftheproductionfromitscurrentelectrolyserprojectpipeline(1Mtpa)wouldbecheaperthanhydrogenproducedfromunabatedcoal.Globally,by2030,morethan5Mtpacouldbeproducedatacostcompetitivewithproductionfromunabatedfossilfuels,andupto12MtpawithacostpremiumofUSD1.5/kgH2.
IEA.CCBY4.0.
PAGE|11
GlobalHydrogenReview2024
Executivesummary
Thiscostgapwillremainanimportantchallengeintheshorttermforprojectdevelopers,butforfinalproductsforwhichhydrogenisanintermediatefeedstock,theimpactislikelytobemanageableinmanycases.Thecostpremiumoflow-emissionshydrogenproductiondecreasesalongthevaluechain,meaningthatconsumersoftenseeonlyamodestpriceincreaseinfinalproducts.Forexample,usingsteelproducedwithrenewablehydrogentodayintheproductionofelectricvehicles(EVs)wouldincreasethetotalpriceofanEVbyaround1%.
Progressisbeingmadeincreatingdemandforlow-emissionshydrogen,butthisstillneedstoscaleup
Effortstostimulatedemandforlow-emissionshydrogen(andhydrogen-basedfuels)arenowgainingtractionasgovernmentsbeginimplementingkeypolicies(suchasCarbonContractsforDifferenceinGermanyandtheEUmandatesinaviationandshipping).Thesemeasureshavealsotriggeredactionontheindustryside,withagrowingnumberofofftakeagreementssignedandthelaunchoftenderstopurchaselow-emissionshydrogen.However,theoverallscaleoftheseeffortsremainsinadequateforhydrogentocontributetomeetingclimategoals.
Policiesandtargetsforhydrogendemandsetbygovernmentsadduptoaround11Mtin2030,nearly3Mtlowerthanlastyearduetothedownwardrevisionsofsometargetsforhydrogenuseinindustry,transportandpowergeneration.Yettheamountoflow-emissionshydrogenproductionthathastakenFID(3.4Mtpa)orisalreadyoperational(0.7Mtpa),at4Mtpa,iswellbelowthatlevel.Thegapconstitutesacallforactiontoindustryandgovernmentstofacilitateofftakeagreementsthatcanhelpunlockinvestmentonthesupplyside.
Atthesametime,governmentpoliciesandtargetsfordemandarewellbehindtheproductiontargetsbygovernments(whichaddupto43Mtpain2030)andareevenlowerthanthepotentialsupplythatcouldbeachievedfromannouncedprojects(49Mtpa).Policymeasuresarestillinsufficienttocreatethelevelofdemandneededtoscaleupproductiontomeetgovernmentexpectations.Inaddition,somemoreambitiousactions(liketheEUtargetsinindustryapplicationsortherefiningquotasinIndia)havenotyetbeentranslatedintonationallegislation.Moreover,fromthearoundUSD100billionofpolicysupportforlow-emissionshydrogenadoptionannouncedbygovernmentsoverthepastyear,supportonthesupplysideis50%largerthanonthedemandside.Strongergovernmentactionwillbeneededtostimulatedemandforlow-emissionshydrogenasanessentialrequirementtounderpininvestmentsonthesupplyside.Industrialhubs,wherelow-emissionshydrogencouldreplacetheexistinglargedemandforhydrogenmettodaybyunabatedfossilfuels,remainanimportantuntappedopportunityforgovernmentstostimulatedemand.
IEA.CCBY4.0.
PAGE|12
GlobalHydrogenReview2024
Executivesummary
Thenextstepsforcertificationandmutualrecognition
Governmentsareacceleratingthedevelopmentofregulationsontheenvironmentalattributesoflow-emissionshydrogen,particularlyregardinggreenhousegas(GHG)emissions.Clearandpredictableregulationscanstrengthencertaintyforlong-terminvestments.Yettheseframeworks,andtheassociatedcertificationschemes,remainunalignedacrossdifferentregions,creatingpotentialformarketfragmentation.Inresponse,atCOP28,37governmentscommittedtomutualrecognitionofnationalcertificationschemes,whileLatinAmericalaunched“CertHiLAC”,aregionalcertificationframework.Inaddition,theInternationalOrganizationforStandardization(ISO)hasreleasedamethodologyfordeterminingGHGemissionsassociatedwithhydrogenproduction,transportandconversion/reconversion.Thiswillbethebasisforafullstandardexpectedby2025or2026,whichcouldserveasacommonmethodologytoenablethemutualrecognitionofcertificates.However,somequestionsrelatedtotheassessmentofGHGemissionsinhydrogensupplychainsremainunresolved,suchashowtoaccountforemissionsfromtheconstructionandmanufacturingofproductionassets.Inthecaseoffossil-basedproduction,thereisaneedforbetterdataonupstreamandmidstreamemissionsoffossilfuelsupplyavailableinnationalinventoriesinordertoensurerobustassessmentoftheGHGemissionsassociatedwiththeseproductionroutes.
HydrogencanbeanopportunityforLatinAmericainthenewenergyeconomy,butisfacingchallenges
Thisyear’sreportincludesaspecialfocusonLatinAmericaandtheCaribbean,followingthelaunchoftheIEA’sLatinAmericaEnergyOutlookin2023.LatinAmericaiswell-positionedtoemergeasamajorproduceroflow-emissionshydrogen,capitalisingonitsabundantnaturalandrenewableenergyresourcesandlargelydecarbonisedelectricitymix.Basedonannouncedprojects,by2030,LatinAmericacouldproducemorethan7Mtpaofhydrogenwithacarbonintensitybelow3kgCO2-eq/kgH2(3-4timeslowerthanusingunabatednaturalgas),inlinewiththerequirementsofseveralexistingregulationsaroundtheworld(e.g.theEUTaxonomy,Japan’sHydrogenSocietyPromotionActandtheUSCleanHydrogenProductionStandard).However,achievingthispotentialinfullwouldrequireasignificantincreaseinelectricitygenerationcapacity–equivalentto20%oftheregion’scurrentpoweroutput–andsubstantialinvestmentsinenablinginfrastructure,suchastransmissionlines.
ManyLatinAmericancountriesalreadyhavehydrogenstrategieswithastrongfocusonexportopportunities.However,theseplansmayneedtobeupdatedinlightofuncertaintyaboutthesizeoftheglobalhydrogenmarket.Atthegloballevel,therehasbeennogrowthinannouncedprojectslinkedtotradeofhydrogenandhydrogen-basedfuelsinthepastyear,suggestingthatprojectdevelopers
IEA.CCBY4.0.
PAGE|13
GlobalHydrogenReview2024
Executivesummary
haveinsteadfocusedondomesticopportunities.InthecaseofLatinAmerica,theseopportunitiesaremostlyinrefiningandammoniaproduction,whichofferimmediatelarge-scaleapplications.Inthecaseofammonia,developingdomesticproductioncapacitieswouldhelptoreduceimportdependencyforfertilisersinaregionwhereagriculturemakesasignificantcontributiontonationalgrossdomesticproduct.
Asthemarketdevelops,newapplicationsinsteel,shippingandaviationwillemerge,togetherwiththeestablishmentofhydrogenhubs.Thesehubscanopenanopportunitytoscaleuphydrogenuseandproductionfordomesticneeds,whilealsoprovidingtheopportunitytoexporthydrogen-basedfuels,aswellasmaterialsproducedwithlow-emissionshydrogen,suchashotbriquettediron,allowingcountriesthataretodaylargeexportersofironore,likeBrazil,todevelopnewindustrialcapacitiesandscaleupinthevaluechain.Aphasedapproachtosupplyintheregion,startingwithsmaller-scaleprojects,willhelpmitigaterisks,reducecapitalinvestment,andprovidevaluableexperienceforscalingupinthefuture.Infrastructureplanninganddevelopment,especiallyinlong-leadprojectslikepowertransmission,shouldbeginimmediatelytosupportfuturehydrogenproduction.
Recommendations
Acceleratedemandcreationforlow-emissionshydrogenbyleveragingindustrialhubsandpublicprocurement
Governmentsshouldtakebolderactiontostimulatedemandforlow-emissionshydrogen.Theimplementationofpoliciessuchasquotas,mandatesandcarboncontractsfordifferencehasalreadystarted,butremainslimitedingeographicalcoverageandscale.Governmentscancapitaliseontheopportunityofferedbyexistinghydrogenusersandhigh-valuesectorssuchassteel,shippingandaviation,whichareoftenco-locatedinindustrialhubs.Poolingdemandinthesehubscancreatescaleandreduceofftakerisksforproducers.Additionally,makinguseofpublicprocurementforfinalproductsthatconsumelow-emissionshydrogenintheirproduction,andencouragingthedevelopmentofmarketswhereconsumersare
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妇科病历汇报及护理案例分析
- 2025高中语文第1单元3实践是检验真理的唯一标准试题含解析部编版选择性必修中
- 急危重症护理学五章
- 《防范和处置非法集资条例》宣传
- 珍稀野生动物介绍
- 2025年度特种设备相关管理资格考试电梯培训试题(包含答案)
- 2025高等信息技术考试题库及答案
- 2025年机关车队调度员招聘面试题及答案
- 年轻人急性心梗科普知识
- 2025年医务人员手卫生规范培训测试题(+答案)
- 课件:《马克思主义基本原理概论》(23版):第七章 共产主义崇高理想及其最终实现
- T-CASMES 428-2024 商业卫星太阳电池阵通.用规范
- 2022年北京市房山初三(上)期中数学试卷及答案
- 《硬科技早期投资-项目评估指南》
- 工业机器人工作站系统组建课后习题答案
- 《锂离子电池存储使用安全规范》
- 集装箱运输完整版本
- 《教育系统重大事故隐患判定指南》知识培训
- 金融科技金融大数据风控平台开发与应用方案
- 《气动电动执行器》课件
- 【MOOC】计算机组成原理-电子科技大学 中国大学慕课MOOC答案
评论
0/150
提交评论