




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3staticallydeterminatebeamsAbstractofthechaperTheobjectiveofthischapteristopresenttheanalysisofsupportreactionsandinternalforcethatmaydevelopinbeamsundertheactionofcoplanarsystemofexternalforcediagrams.Theanalysisofsinglespanbeamsisthefoundationoftheanalysisofmultispanbeam;thecontentpertinenttosinglespanbendingmomentdiagramsofstraightmembers,whichareplottedbyusingthemethodofsuperpositionsegmentbysegment.3.1theanalysisofsinglespanbeamsInengineeringpractice,singlespanbeamshaveavarietyofapplication.Theanalysispertainingtosinglespanbeamsisthefoundationofstaticallydeterminatemultispanbeams,framesandsoforth.Thecommonlyusedsinglespanbeamsarethefollowingthreekinds:(1)simplysupportedbeamsorsimplebeams[fig3.1],(2)cantileverbeamsand(3)overhangingbeamsThechapterwillreviewanddiscussthecalculationofinternalforcesandconstructionoftheirdiagramsofstaticallydeterminatesinglespanbeams.3.1.1internalforcesandtheirsignconventionForaplanarmember,itisgenerallysubjectedtoshearforcesandbendingmomentsaswellasaxialforcesundertheactionofexternalloads.Theinternalforceconponentorientedinthedirectionperpendiculartothecentroidalaxisofabeamatthesectionunderconsiderationisreferredtoastheaxialforce.Positiveaxialforcesmakethebeamintensilestatewhilenegativeincompressingstate.Theinternalforcecomponentorientedinthedirectionperpendiculartothecentroidalaxisofabeamatthesectionunderconsiderationiscalledtheshearforce.Theshearsareconsideredtobepositivewhentheytendtomaketheportionofthememberontheleftofthesectionrotateclockwiseanviceversa.Theinternalcouplewhichisthemomentaboutthesectionunderconsiderationofalltheinternalforcesistermedthebendingmoment.Thepositivebendingmomentisshowninfig.Thebendingmomentsareconsideredtobepositivewhentheytendtobendahorizontalbeamconcaveupward,causingcompressionintheupperfibersandtensioninthelowerfibersofthebeamatthesectionandviceversa.Themethodofcomputinginternalforces-methodofsectionsThemethodofsectionsisanelementarymethodtodeterminetheinternalforcecomponentsinamember.Themethodmeanstopassanimaginarysectionthroughthememberandcutthememberintotwopartsandthenconsiderthefreebodyoftheeithersideofthesection.wemayobtainthethreeinternalforcecomponentsatthesectionbyequilibriumequationsofthefreebody.Example3-1Figure3.3(a)showsasimplebeam,determinetheinternalforcesatsectionsC,D1andD2.1.befordeterminingtheinternalforcesthereactionscanbeobtainedbyconsideringtheequilibriumconditionsofthefreebodyoftheentirebeam2.TheinternalforcesatsectionCAnimaginarysectionispassedthroughsectionC,cuttingthebeamintotwoportions,ACandCB.TheportionACshowninFig.3.3(c),whichistotheleftsideofthesection,isusedheretocomputetheinternalforce.Byutilizingthethreeequilibriumconditions,theinternalforcescanbedetermined.
(tensioninthelowerfiber)Thenegativeindicatethattheirrealsenseareoppositetothoseshownonthefreebody,i.e.,axialforceisapressure.Theshearisreallynegative.Thesenseofispositivemeansthatitsactualdirectionisthesameasthatshownonthefreebody,thatiscausestensioninthelowerfibersofthebeamatsectionC.3.TheinternalforcesatsectionAnimaginarysectionispassedthroughsection,cuttingthebeamintoportions,.TheportionshowninFig.3.3(d),whichistotheleftsideofthesection,isusedheretocomputetheinternalforces,byutilizingthethreeequilibriumconditions,theinternalforcescanbedetermined.P374.TheinternalforcesatsectionAnimaginarysectionispassedthroughsection,cuttingthebeamintotwoportions,.theportionshowninFig.3.3(e),whichistotheleftsideofthesection,isusedheretocomputetheinternalforces.Byutilizingthethreeequilibriumconditions,theinternalforcescanbedetermined.Themeaningsoftheinternalforcesaresimilarastheforegoing.Theselectionofthefreebodycanbetheeithersideofthesectionunderconsiderationwhenusethemethodofsections.Forinstance,inaboveexamplewecanselecttheleftsideofthesectionunderconsiderationorrightsideofthesectionaswell.althougheitherofthetwosidesofthebeamcanbeemployedforcomputinginternalforces,weshouldselectthesidethatwillrequiretheleastamountofcomputationaleffort,suchasthesidethatdoesnothaveanyreactionsactingonitorthathastheleastnumberofexternalloadsandreactionsappliedtoit.basedonthisargument,selectsegment(Fig.3.3(f))andsegment(Fig.3.3(g))canfindinternalforcesmoreeasilyatsectionsrespectively.Itisrecommendedthatreaderscheckthem.Theprocedurefordetermininginternalforcesataspecifiedlocationonabeamcanbesummarizedasfollows;(1)passanimaginarysectionperpendiculartothecentroidalaxisofthebeamatthesectionwheretheinternalforcesaredesired,therebycuttingthebeamintotwoportions.Thenselectanyoneofthetwoportionsasthefreebody.(2)drawthefree-bodydiagramuponwhichreactionsandappliedloadsanddesiredinternalforcesshouldbeactuallyimposed.(3)applytheequilibriumconditionsofthefreebodyanddeterminethedesiredthreeinternalforces.Obviously,inordertoestablishthecorrectequilibriumequationssoastoobtaincorrectinternalforces,thekeystepispresentingthefree-bodydiagramcorrectly.followingconsiderationhastotakewhenpresentfree-bodydiagrams(1)Thefreebodyshouldbeisolatedcompletelywithitsrestraintsandalltherestraintsshouldbesubstitutedbytheircorrespondingconstraintforces.(约束力)(2)theconstraintforcesshouldmeetthecharacteristicsofrestraints.Forexample,whileremoveonerollersupport,onehingedsupportandonefixedsupport,onesupportreaction,twosupportreactionsandthreesupportreactionsshouldbeimposedonthefreebodyrespectively;whilecutonelink,onehingeandonerigidjoint,anaxialforce,anaxialforceandashear,anaxialforceandashearandacoupleshouldbeexertedonthefreebodyrespectively.(3)alltheforcesactingonthefreebodyshouldbeindicatedactually.Donotleaveouttheforcesdirectlyexertingonitanddonotsuperimposetheforcesnotdirectlyexertingonit.Theforcesexertingonafreebodycanbeclassifiedastwogroups.Oneistheexternallyappliedloadsandtheotherisinternalforcesexertedbytheotherportioncorrespondingtothefreebody.(4)Thepresentationofafreebodyshouldbeclearandaccurate,generally,giveforcesoughttoindicateaccordingtotheiractuallocationsandmagnitudesanddirections,whereasunknownforcesshouldbeindicatedattheirlocationsintheirpositivedirections.
Basedonthisregulation,ifconsequent(结果)unknownsarepositivetheyareactuallypositive;ifsomeoftheunknownsarenegativetheyareactuallynegative,theirdirectionindicationarejustintheoppositedirection.Therefore,youcanavoidtheambiguitycausedbydirectionsofunknownforces.Abovementionedprocedureofmethodofsectionsisanormalprogresstocalculateinternalforces.Itscounterpartmethod,whichdoesnotneedfree-bodydiagramandmaybedevelopedbythedefinitionofinternalforces,canbestatedasfollowing:Axialforce:theinternalaxialforceonanysectionofabeamisequalinmagnitudebutoppositeindirectiontothealgebraicsum(resultant)ofthecomponentsinthedirectionparalleltotheaxisofbeamofalltheexternalloadsandsupportreactionsactingoneithersideofthesectionunderconsideration.iftheportionofthebeamtoleftsideofthesectionisbeingusedforcomputingtheaxialforce,thentheexternalforcesactingtotheleftareconsideredpositive,whereastheexternalforceactingtotherightareconsideredtobenegative.Iftherightportionisbeingusedforanalysis,thentheexternalforcesactingtotherightareconsideredtobepositiveandviceversa.Shear:theshearonanysectionofabeamisequalinmagnitudebutoppositeindirectiontothealgebraicsumofthecomponentsinthedirectionperpendiculartotheaxisofthebeamofalltheexternalloadsandsupportreactionsactingoneithersideofthesectionunderconsideration.Iftheleftportionofthebeamisbeingusedforanalysis,thentheexternalforcesactingupwardareconsideredpositive,whereastheexternalforcesactingdownwardareconsideredtobenegative.iftherightportionhasbeenselectedforanalysis,thenthedownwardexternalforcesareconsideredpositiveandviceversa.Bendingmoment:thebendingmomentonanysectionofabeamisequalinmagnitudebutoppositeindirectiontothealgebraicsumofthemomentsaboutthecentroidofthecrosssectionunderconsiderationofalltheexternalloadsandsupportreactionsactingoneithersideofthesection.Iftheleftportionisbeingusedforanalysis,thentheclockwisemomentsareconsideredtobepositive,andthecounterclockwisemomentsareconsiderednegative.Iftherightportionhasbeenselectedforanalysis,thenthecounterclockwisemomentsareconsideredpositiveanviceversa.Example3-2p403.1.3relationshipsbetweenloads,shearsandbendingmomentsTheconstructionofinternalforcediagramscanbeconsiderablyexpeditedbyusingthebasicrelationshipsthatexistbetweentheloads,theshears,andthebendingmoments.(1)DifferentialrelationshipsToderivetheserelationships,considerabeamsubjectedtoanarbitaryloading,asshowninfig.3.4(a).Alltheexternalloadsshowninthisfigureareassumedtobeactingintheirpositivedirections.Asindicatedinthisfigure,theexternaldistributedandconcentratedloadsactingdownwardareconsideredpositive;theexternalcouplesactingclockwisearealsoconsideredtobepositiveandviceversa.Next,weconsidertheequilibriumofadifferentialelementoflengthdx,isolatedfromthebeambypassingimaginarysectionsatdistancexanx+dxfromtheoriginA,asshowninFig.3.4(a).Thefreebodydiagramoftheelementisshowninfig3.4(b),inwhichQandMrepresenttheshearandbendingmoment,respectively,actingontheleftfaceoftheelement,dQandDmdenotethechangesinshearandbendingmoment,respectively,overthedistancedx,Asthedistancedxisinfinitesimallysmall,thedistributedloadqactingontheelementcanbeconsideredtobeuniformofmagnitudeq(x).Inorderfortheelementtobeinequilibrium,theforcesandcouplesactingonitmustsatisfythetwoequationsofequilibrium,thethirdequilibriumequationisautomaticallysatisfied,sincenohorizontalforcesareactingontheelement,applyingtheequilibriumequationsthefollowingformulatecanbeobtained.①distributedloadsConsideringtheequilibriumofanarbitraryfreebodyofadifferentialelementoflengthdxisolatedfromthesegmentsubjectedtodistributedloadsofthebeam,wewrite(a)(b)(3-1)Combineeqs.(3-1)(a)and(b),weobtain(3-2)Abovedifferentialrelationshipsrepresentthefollowinggeometricmeanings:(a)canbeexpressedas:slopeofsheardiagramatapointequalstotheintensityofdistributedloadatthatpointbutoppositesign.(b)canbestatedas:slopeofbendingmomentdiagramatapointequalstotheshearatthatpoint.(3-2)canbepresentas:curvatureofbendingmomentdiagramatapointequalstotheintensityofdistributedloadatthatpointbutoppositesign.Basedonabovedifferentialrelationships,theinternalforcediagramslocatedinthesegmentsimposedbydistributedloadspossessthefollowinggeometriccharacteristics:a.atthesegmentimposedbyuniformlydistributedloads(q=constant)Qdiagramisalinearfunctionofx,thecurveofwhichisaninclinedstraightline.WhileMdiagramisaquadraticfunctionofx,themomentcurveisaparaboliccurve,whichisconcaveupwardforadownwardloadq②ConcentratedloadsTherelationshipsbetweentheloadsandshearsderivedthusfarthrougharenotvalidatthepointsofapplicationofconcentratedloads,becauseatsuchapointtheshearchangesabruptlybyanamountequaltothemagnitudeoftheconcentratedload.Toverifythisrelationship,weconsidertheequilibriumofadifferentialelementthatisisolatedfromthebeamoffig3.4(a)bypassingimaginarysectionsatinfinitesimaldistancestotheleftandtotherightofthepointofapplicationEoftheconcentratedloadp.thefree-bodydiagramofthiselementisshowninfig.3.4(c).Applyingtheequilibriumequationswewrite(3-3)Equation(3-3)(a)canbeexpressedas:themagnitudesofshearsatthetwosidesofthepointofapplicationofconcentratedloadareunequal,thesheardifferenceatthetwosidesisequaltothemagnitudeofP.therefore,thesheardiagramwillhaveabruptchangeatthepointofconcentratedloadpbyanamountequaltothemagnitudeoftheconcentratedloadp.(b)canbeexpressedas:thebendingmomentsatthetwosidesofthepointofapplicationofconcentratedloadareidentical.Notethatbecauseoftheabruptchangeinthesheardiagramatthatpoint.Thatis,therearecusps(anglepoints)onthemomentdiagramatthelocationswhereconcentratedloadsareappliedon.Whenconcentratedloadsaredownward,thecuspsaredownwardaswell.(ex)③couplesorconcentratedmomentsAlthoughtherelationshipsbetweentheloadsandshearsderivedthusfararevalidatthepointsofapplicationofcouplesorconcentratedmoments,therelationshipsbetweentheshearsandbendingmomentsasgivenbyeqs.(3-1)(b)and(3-3)(b)arenotvalidatsuchpoint,becauseatsuchapointthebendingmomentchangesabruptlybyanamountequaltothemagnitudeofthemomentorthecouple.Thederivethisrelationship,weconsidertheequilibriumofadifferentialelementthatisisolatedfromthebeamoffig.3.4(a)bypassingimaginarysectionsatinfinitesimaldistancetotheleftandtotherightofthepointFofapplicationofthecouplem.thefree-bodydiagramofthiselementisshowninfig.3.4(d).Applyingtheequilibriumequationswewrite(3-4)(a)canbestatedas:themagnitudesofshearsatthetwosidesofthepointofapplicationofconcentratedmomentmareequal;thuslythesheardiagramwillnotchangeatthetwosides.(b)canbestatedas:themagnitudesofbendingmomentsatthetwosidesofthepointofapplicationofconcentratedmomentmareequal,theirdifferenceatthetwosidesisequaltothemagnitudeofm,thereby,themomentdiagramwillhaveabruptchangeatthepointofapplicationofconcentratedmomentmbyanamountequaltothemagnitudeoftheconcentratedmomentm,whereastheslopeofthemomentdiagramwillnotchangesincetheconstantvalueofshearsatthetwosidesofthepoint,i.e.,theslopesatthetwosidesremainparallel.(2)integralrelationsipsTodeterminethechangeinshearandbendingmomentbetweenpointsAandBalongtheaxisofthemember(seefig.3.5),weintegrateEq.(3-1)fromAtoBtoobtainthefollowingintegralrelationsbetweenloadsandinternalforces[Eq.(3-5)].(3-5)Theseequationsimplythat:TheshearatendBisequaltothedifferencebetweentheshearatendAandtheresultantofloadqbetweenAandB,orthechangeinshearbetweensectionsAandBisequaltotheareaofthedistributedloaddiagrambetweensectionsAandB.
ThebendingmomentatendBisequaltothesumofthatatendAandtheareaofthesheardiagrambetweenAandB,orthechangeinbendingmomentbetweensectionsAandBisequaltotheareaofthesheardiagrambetweensectionsAandB.IfnotonlythedistributedloadsbutalsoconcentratedloadsareexertedonsegmentAB,Eq.(3-5)maybewrittenasWhererepresentsthealgebraicsumoftheverticalconcentratedloadsbetweenpointsAandB;isthesumoftheconcentratedmomentsexertedonsegmentAB.ThedownwardPandclockwisemareassumedtobepositiveintheequations.3.2ConstructionofbendingmomentdiagrambyprincipleofsuperpositionforstraightmembersTheprincipleofsuperpositionisextremelyconvenientinstructuralanalysis.Ifastructureissubjectedtoavarietyofloads,thedisplacementsinthestructurevarylinearlywiththeappliedloads,thatis,anyincrementindisplacementisproportionaltotheloadscausingit,andifalldeformationsofastructurearesmallenoughsothattheresultingdisplacementofthestructuredoesnotsignificantlyaffectthegeometryofthestructureandhencedonotchangetheinitiallyactingpropertyoftheloadsinthemembers.Undersuchconditions,reactions,internalforcesanddisplacementsduetotheloadscanbeobtainedbyutilizingtheprincipleofsuperposition.Theprinciplecanbeexpressedas,ifastructureislinearlyelastic,theforcesactingonthestructuremaybeseparatedordividedintosomeexpedientlyindividualformsandthenthestructuremaybeseparatelyanalyzedforeachindividualforms.Thefinalresultscanthenbeobtainedbyaddinguptheindividualresults.Nowwewilldiscusshowtheprincipleofsuperpositionbeusedtofacilitatetheconstructionofbendingmomentdiagramsforstraightmembers.3.2.1superpositionmethodofbendingmomentsforsimplebeamsFigure3.7(a)showsasimplysupportedbeamsubjectedtonotonlytheuniformlydistributedloadsinthespanbutalsotheendcouples.Byprincipleofsuperposition.Dividedtheloadsappliedonthebeamintotwogroups,oneisthetwoendcouples[fig.3.7(b)]andtheotherisuniformlydistributedloads[fig.3.7(c)]Ifthebeamundergoestheendcouplesonly,themomentdiagramissimplyastraightlineasshowninfig.3.7(b),itisdenotedbyM’diagram;andifthebeamissubjectedtotheuniformlydistributedloadsinthespanonly,thebendingmomentdiagramM(x)isasecond-orderparabolaandmaybeplottedasshowninfig.3.7(c)Thenthefinalbendingmomentdiagramofthebeammaybeobtainedbytheprincipleofsuperposition.Thatis,depictingtheM’diagramfirst,thentheordinatesofM(x)diagrambeingsuperimposedontheM’diagramwillcompletethefinalbendingmomentdiagramofthebeamasshowninfig3.7(d)Notethatitistheordinatesnotthefiguresofthetwodiagramswhicharesuperimposedtogether.TheordinateMatanyarbitrarysectionshowninfig3.7(d)shouldmeetthefollowingformula.M=M’+M(x)WheretheordinatesofM(x)areperpendiculartothebeamaxisABnotthedashedline.3.2.2superpositionmethodsegmentbysegmentNowextendthesuperpositionmethoddiscussedinabovesubsectiontotheconstructionofbendingmomentforanyarbitrary(任意的)segment(部分)ofastraightmember(连续截面).Figure.3.8(a)showsasimplysupportedbeamsubjectedtotheuniformlydistributedloadsonlyinsegmentAB.ThebendingmomentsMAatsectionAandMBatsectionBaredeterminedbythemethodofsections.NextwewilldiscusshowtoconstructthebendingmomentdiagramofsegmentABbyutilizingprincipleofsuperposition.TakesegmentABofthebeamshowninFig.3.8(a)asanexampleandcomparethefreebodydiagramofthesegment[fig3.8(b)]withthesimplysupportedbeaminfig.3.8(c).Wemayfindthatinthesetwocasesboththeloadqandtheendcouplesarethesame.Byemploying使用
theequilibriumequations,wealsofindYA=QAYB=QB.Since
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有效沟通的现代汉语表达技巧试题及答案
- 税法应用中的常见错误试题及答案
- 2025年税法考试探索新题型试题及答案
- 家族史在文学中的表现形式试题及答案
- Msoffice能力提升试题及答案综合分析
- 风电项目融资策略与资本运作方案
- 叙事中的反向时间处理试题及答案
- WPS文档排版的技巧提升试题及答案
- 现代汉语不同场景应用试题及答案
- 理解现代汉语句型结构试题及答案
- 实测实量方案交底
- 医院科室6S管理制度
- 用TOC理论提高生产制造的竞争力课件
- 病历书写基本规范12021病历书写规范试题.doc
- 《山东省自然科学基金资助项目年度进展报告》
- 电厂保安人员管理制度
- ge核磁共振机房专用精密空调机技术要求
- 发展与教育心理学个别差异
- 2022年重庆市建筑安全员A证考试近年真题汇总(含答案解析)
- 新干县人民医院血液透析治疗患者告知书
- 沸腾炉的设计
评论
0/150
提交评论