版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LLM4SR:ASurveyonLargeLanguageModelsforScientific
Research
ZIMINGLUO∗
,UniversityofTexasatDallas,USA
arXiv:2501.04306v1[cs.CL]8Jan2025
ZONGLINYANG∗
,NanyangTechnologicalUniversity,Singapore
ZEXINXU,
UniversityofTexasatDallas,USA
WEIYANG,
UniversityofTexasatDallas,USA
XINYADU,
UniversityofTexasatDallas,USA
Inrecentyears,therapidadvancementofLargeLanguageModels(LLMs)hastransformedthelandscapeofscientificresearch,offeringunprecedentedsupportacrossvariousstagesoftheresearchcycle.ThispaperpresentsthefirstsystematicsurveydedicatedtoexploringhowLLMsarerevolutionizingthescientificresearchprocess.WeanalyzetheuniquerolesLLMsplayacrossfourcriticalstagesofresearch:hypothesisdiscovery,experimentplanningandimplementation,scientificwriting,andpeerreviewing.Ourreviewcomprehensivelyshowcasesthetask-specificmethodologiesandevaluationbenchmarks.Byidentifyingcurrentchallengesandproposingfutureresearchdirections,thissurveynotonlyhighlightsthetransformativepotentialofLLMs,butalsoaimstoinspireandguideresearchersandpractitionersinleveragingLLMstoadvancescientificinquiry.Resourcesareavailableatthefollowingrepository:
/du-nlp-lab/LLM4SR.
CCSConcepts:•Computingmethodologies→Naturallanguageprocessing;•Generalandreference→Surveysandoverviews.
AdditionalKeyWordsandPhrases:LargeLanguageModels,ScientificHypothesisDiscovery,ExperimentPlanningandImplementation,AutomatedScientificWriting,PeerReviewGeneration
ACMReferenceFormat:
ZimingLuo,ZonglinYang,ZexinXu,WeiYang,andXinyaDu.2025.LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch.ACMComput.Surv.1,1(January2025),
37
pages.
/10.1145/
nnnnnnn.nnnnnnn
Automating
Research
Process§3.3
Draftingand
Writing
§4.4
CitationText
Generation
§4.2
RelatedWork
Generation
§4.3
Scientific
Hypothesis
Discovery
§2
Peer
Reviewing§5
OptimizingExperimentDesign§3.2
PaperWriting§4
ExperimentPlanning&Implementation
§3
Fig.1.Schematicoverviewofthescientificresearchpipelinecoveredinthissurvey.Thiscyclicalprocessbeginswithscientifichypothesisdiscovery,followedbyexperimentplanningandimplementation,paperwriting,andfinallypeerreviewingofpapers.Theexperimentplanningstageconsistsofoptimizingexperimentdesignandexecutingresearchtasks,whilethepaperwritingstageconsistsofcitationtextgeneration,relatedworkgeneration,anddrafting&writing.
*Bothauthorscontributedequallytothiswork.
Authors’ContactInformation:
ZimingLuo
,ziming.luo@,UniversityofTexasatDallas,Dallas,Texas,USA;
ZonglinYang
,zonglin001@.sg,NanyangTechnologicalUniversity,Singapore,Singapore;
ZexinXu,
zexin.xu@,UniversityofTexasatDallas,Dallas,Texas,USA;
WeiYang,
wei.yang@,UniversityofTexasatDallas,Dallas,Texas,USA;
XinyaDu
,xinya.du@,UniversityofTexasatDallas,Dallas,Texas,USA.
2025.ACM1557-7341/2025/1-ART
/10.1145/nnnnnnn.nnnnnnn
Preprint.
2LuoandYangetal.
1Introduction
“IfIhaveseenfurther,itisbystandingontheshouldersofgiants.”
—IsaacNewton
ThescientificresearchpipelineisatestamenttotheachievementsoftheEnlightenmentinsystematicinquiry
[17,
58,
58
].Inthistraditionalparadigm,scientificresearchinvolvesaseriesofwell-definedsteps:researchersstartbygatheringbackgroundknowledge,proposehypotheses,designandexecuteexperiments,collectandanalyzedata,andfinallyreportfindingsthroughamanuscriptthatundergoespeerreview.Thiscyclicalprocesshasledtogroundbreakingadvance-mentsinmodernscienceandtechnology,yetitremainsconstrainedbythecreativity,expertise,andfinitetimeandresourcesavailableinherenttohumanresearchers.
Fordecades,thescientificcommunityhassoughttoenhancethisprocessbyautomatingaspectsofscientificresearch,aimingtoincreasetheproductivityofscientists.Earlycomputer-assistedresearchcandatebacktothe1970s,introducingsystemssuchasAutomatedMathematician
[74,
75
]andBACON
[71
],whichshowedthepotentialofmachinestoassistinspecializedresearchtasksliketheoremgenerationandempiricallawidentification.Morerecently,systemssuchasAlphaFold
[62
]andOpenFold
[4
]haveexemplifiedpioneeringeffortstoautomatespecificresearchtasks,significantlyspeedingupscientificprogressintheirrespectivedomainsbythousandsoftimes.YetitwasonlywiththeadventoffoundationmodelsandtherecentexplosioninLargeLanguageModels(LLMs)
[2,
154
]thatthevisionofcomprehensiveAIassistanceacrossmultipleresearchdomainsbecamerealistic
[190
].
TherecentyearshavewitnessedremarkableadvancementsinLLMs,transformingvariousfieldsofAIandNaturalLanguageProcessing(NLP).Thesemodels,suchasGPT-4
[2
]andLLaMA
[154
],havesetnewbenchmarksinunderstanding,generatingandinteractingwithhumanlanguage.Theircapabilities,enhancedbymassivedatasetsandinnovativearchitectures,nowextendbeyondconventionalNLPtaskstomorecomplexanddomain-specificchallenges.Inparticular,theabilityofLLMstoprocessmassiveamountsofdata,generatehuman-liketext,andassistincomplexdecision-makinghascapturedsignificantattentioninthescientificcommunity
[92,
141
].ThesebreakthroughssuggestthatLLMshavethepotentialtorevolutionizethewayscientificresearchisconducted,documented,andevaluated
[156,
165,
174
].
Inthissurvey,weexplorehowLLMsarecurrentlybeingappliedacrossvariousstagesofthescientificresearchprocess.Specifically,weidentifyfourgeneraltaskswhereLLMshavedemonstratednotablepotential.Webeginbyexploringtheirapplicationinscientifichypothesisdiscovery,whereLLMsleverageexistingknowledgeandexperimentalobservationstosuggestnovelresearchideas.Thisisfollowedbyareviewoftheircontributionstoexperimentplanningandimplementation,whereLLMsaidinoptimizingexperimentaldesign,automatingworkflows,andanalyzingdata.Wealsocovertheiruseinscientificwriting,includingthegenerationofcitations,relatedworksections,andevendraftingentirepapers.Finally,wediscusstheirpotentialinpeerreview,whereLLMssupporttheevaluationofscientificpapersbyofferingautomatedreviewsandidentifyingerrorsorinconsistencies.Foreachofthesetasks,weprovideacomprehensivereviewofthemethodologies,benchmarks,andevaluationmethods.Moreover,thesurveyidentifiesthelimitationsofeachtaskandhighlightsareasneedingimprovement.ByanalyzingthevariousstagesoftheresearchcyclewhereLLMscontribute,thissurveycaninspireresearcherstoexploreemergingconcepts,developevaluationmetrics,anddesigninnovativeapproachestointegrateLLMsintotheirworkflowseffectively.
ComparisonwithExistingSurveys.ThissurveyprovidesabroaderandmorecomprehensiveperspectiveontheapplicationsofLLMsacrosstheentirescientificresearchcyclecomparedtopriorspecializedstudies.Forexample,Zhangetal.
[187
]reviewover260LLMsinscientificdiscovery
Preprint.
Preprint.
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch3
Literature-based
Discovery(§2.2.1)
InductiveReasoning(§2.2.2)
MainTrajectory(§2.3.1)
OtherMethods(§2.3.2)
History(§
2.2)
LBD[47,151],DBLP[155],LinkPredictionModels[152,160,171]
Norton[113],Yangetal.[175],Yangetal.[173],Zhongetal.[191],Zhuetal.[194],Wangetal.[163],Qiuetal.[120]
SciMON[159],MOOSE[174],MCR[145],Qi[119],
FunSearch[130],ChemReasoner[146],HypoGeniC[193],
Scientific
HypothesisDiscovery(§
2)
ResearchAgent[9],LLM-SR[140],SGA[105],AIScientist[103],MLR-Copilot[84],IGA[141],SciAgents[41],Scideator[121],
DevelopmentofMethods(§2.3)
MOOSE-Chem[176],VirSci[148],CoI[77],Nova[49],CycleResearcher[167],SciPIP[164]
Socraticreasoning[30],IdeaSynth[118],HypoRefine[96],LDC[80]
DiscoveryBench[108],DiscoveryWorld[57]
SciMON[159],Tomato[174],Qietal.[119],Kumaretal.[68],Tomato-Chem[176] Benchmarks(§2.4)
Evaluation(§2.5)
LLM-based/Expert-basedEvaluation;DirectEvaluation/Reference-basedEvaluation;
DirectEvaluation/Comparison-basedEvaluation;RealExperimentEvaluation
HuggingGPT[136],CRISPR-GPT[52],ChemCrow[15],Coscientist[14],LLM-RDF[131],AutoGen[168],Lietal.[81],Lietal.[90]
OptimizingExperi-
LargeLanguageModels(LLMs)forScientificResearch
mentalDesign(§
3.2)
DataPreparation
(§3.3.1)
ExperimentPlanning
andImple-mentation(§
3)
Clearning[21,185],Labeling[153],FeatureEngineering[46],Synthesis[82,85,98]
ExperimentExecution
——andWorkflow
Automation(§3.3.2)
DataAnalysisand
ChemCrow[15],Coscientist[14],Wangetal.[157],Ramosetal.[124],ChatDrug[99],DrugAssist[179],ESM-1b[128],ESM-2[95],
FerruzandHöcker[35],Heetal.[44]
AutomatingExperi-mentalProcess(§3.3)
Singhetal.[143],Lietal.[79],MentalLLaMA[172],
Interpretation(§3.3.3)
Daietal.[27],Rasheedetal.[126],Zhaoetal.[188],Oliveretal.[114]
TaskBench[137],DiscoveryWorld[57],MLAgentBench[54],AgentBench[100],Spider2-V[16], DSBench[61],DS-1000[70],CORE-Bench[142],SUPER[13],MLE-Bench[20],LAB-Bench[72],
ScienceAgentBench[24]
Xingetal.[170],AutoCite[161],BACO[40],GuandHahnloser[43],Jungetal.[63]
Benchmarks&
Evaluation(§3.4)
CitationText
Generation(§4.2)
Zimmermannetal.[197],Agarwaletal.[3],Huetal.[50],Shietal.[138],Yuetal.[181],Susnjaketal.[150],LitLLM[3],HiReview[50],Nishimuraetal.[112]
RelatedWork
PaperWriting(§
4)
Generation(§4.3)
Augustetal.[8],SCICAP[48],PaperRobot[160],Ifarganetal.[56],CoAuthor[73],AutoSurvey[165],AIScientist[103]
ALCE[38],CiteBench[37],SciGen[111],SciXGen[22]
DraftingandWriting(§4.4)
Benchmarks&
Evaluation(§4.5)
ReviewRobot
[162]
,Reviewer2
[39]
,SWIF2T
[18]
,SEA
[180]
,MARG
[28]
,MetaGen
[11]
,Kumaretal.
[67]
,MReD
[135]
,CGI2
[184]
,CycleReviewer
[167]
AutomatedPeer
ReviewingGeneration(§
5.2)
PaperMage[101],CocoSciSum[29]
ReviewerGPT[97],PaperQA2[144],Scideator[122]
ReviewFlow[149],CARE[198],DocPilot[110]
Information
Summarization
PeerReview-ing(§
5)
ErrorDetection&
QualityVerification
LLM-assistedPeerReviewWorkflows(§
5.3)
Benchmarks&
Evaluation(§
5.4)
ReviewWritingSupport
MOPRD
[94]
,ORSUM
[184]
,MReD
[135]
,PeerSum
[78]
,NLPeer
[33]
,PeerRead
[65]
,ASAP-Review
[183]
,ReviewCritiqe
[32]
,Reviewer2
[39]
Fig.2.Themaincontentflowandcategorizationofthissurvey.
acrossvariousdisciplines,focusingprimarilyontechnicalaspectssuchasmodelarchitecturesanddatasets,withoutsituatingtheirroleswithinthebroadercontextoftheresearchprocess.Similarly,othersurveystendtoadoptnarrowerscopes,examiningspecificcapabilitiesofLLMsforgeneralapplications,suchasplanning
[55
]orautomation
[158
],ratherthantheirfocusedutilityinscientificresearchworkflows.Additionally,someworksaddressgeneralapproachesrelevanttospecificresearchstagesbutarenotexclusivelycenteredonLLMs,suchasrelatedworkandcitationtext
4LuoandYangetal.
Preprint.
generation
[89
]orpeerreviewprocesses
[33
].Incontrast,thissurveyintegratesthesefragmentedperspectives,providingaholisticanalysisofLLMs’contributionsacrossthescientificworkflowandhighlightingtheirpotentialtoaddressthediverseandevolvingdemandsofmodernresearch.
OrganizationofthisSurvey.AsillustratedinFigure
2
,thestructureofthissurveyisasfollows:§
2
coversLLMsforscientifichypothesisdiscovery,includinganoverviewofmethodologiesandkeychallenges.§
3
focusesonexperimentplanningandimplementation,highlightinghowLLMscanoptimizeandautomatetheseprocesses.§
4
delvesintoautomatedpaperwriting,includingcitationandrelatedworkgeneration,while§
5
exploresLLM-assistedpeerreview.Foreachtopic,thesurveyconcludeswithasummaryofcurrentchallengesandfuturedirectionsinthisrapidlyevolvingfield.
2LLMsforScientificHypothesisDiscovery
2.1Overview
Beforetheemergenceofthefield“LLMsforscientifichypothesisdiscovery”,themostrelatedpreviousresearchdomainsare“literature-baseddiscovery”and“inductivereasoning”.Wefirstsummarizetheresearchinthetworelateddomains(ashistory),thensummarizethemethods,benchmarks,evaluationdevelopmenttrends,andimportantprogress,andfinallyconcludewiththemainchallengesinthediscoverytask.
2.2HistoryofScientificDiscovery
UsingLLMstogeneratenovelscientifichypothesesisanewresearchtopic,mostlyoriginatingfromtworelatedresearchdomains,whichare“literature-baseddiscovery”and“inductivereasoning”.
2.2.1Literature-basedDiscovery.Literature-baseddiscovery(LBD)wasfirstproposedbySwanson
[151
].Thecentralideaisthat“knowledgecanbepublic,yetundiscovered,ifindependentlycreatedfragmentsarelogicallyrelatedbutneverretrieved,broughttogether,andinterpreted.”Therefore,howtoretrievepublicknowledgethatcanbebroughttogethertocreatenewknowledgeremainsachallenge.
Swanson
[151
]proposeaclassicformalizationofLBD,whichisthe“ABC”modelwheretwoconceptsAandCarehypothesizedaslinkediftheybothco-occurwithsomeintermediateconceptBinpapers.Morerecentworkhasusedwordvectors
[155
]orlinkpredictionmodels
[152,
160,
171]
todiscoverlinksbetweenconceptstocomposehypotheses.
However,classicLBDmethodsdonotmodelcontextsthathumanscientistsconsiderintheideationprocess,andarelimitedtopredictingpairwiserelationsbetweendiscreteconcepts
[47
].Toovercometheselimitations,Wangetal.
[159
]makethefirstattempttogroundLBDinanaturallanguagecontexttoconstrainthegenerationspace,andalsousegeneratedsentencesasoutputinsteadofonlypredictingrelationsasinthetraditionalLBD.
AnotherlimitationofLBDisthatithaslongbeenthoughtofasonlybeapplicabletoaveryspecific,narrowtypeofhypothesis
[159]
.However,recentprogressinscientificdiscoveryindicatesthatLBDmighthaveamuchwiderapplicablescope.Particularly,Yangetal.
[174
]andYangetal.
[176
]discussextensivelywithsocialscienceandchemistryresearcherscorrespondingly,andfindthatmostexistingsocialscienceandchemistrypublishedhypotheses(insteadofonlyanarrowtypeofhypotheses)canbeformulatedinaLBDpattern.Itprobablyindicatesthatfuturehypothesesinsocialscienceandchemistrytobepublishedcanalsoresultfrom(correct)linkagesandassociationsofexistingknowledge.
2.2.2InductiveReasoning.Inductivereasoningisaboutfindingageneral“rule”or“hypothesis”thathasawideapplicationscopefromspecific“observations”
[175
].Forexample,Geocentrism,
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch5
Preprint.
Heliocentricism,andNewton’sLawofGravityareallproposed“rules”basedonthe“observations”ofthemovementsofstarsandplanets.Scientificdiscoveryisadifficulttaskofinductivereasoningtoanextreme,whereeach“rule”isanovelscientificfinding.
Thephilosophyofsciencecommunityhassummarizedthreefundamentalrequirementsfora“rule”frominductivereasoning
[113
],whichare(1)“rule”shouldnotbeinconflictwith“observa-tions”;(2)“rule”shouldreflectthereality;(3)“rule”shouldpresentageneralpatternthatcanbeappliedtoalargerscopethanthe“specific”observations,coveringnewinformationnotexistingintheobservations.Previouslyinductivereasoningresearchismainlyconductedbythe“inductive logicprogramming”community
[26
],whichusesformallanguageandsymbolicreasoners.Yangetal.
[173
]firstworkongenerativeinductivereasoningintheNLPdomain,whichistogeneratenaturallanguagerulesfromspecificnaturallanguageobservationswithlanguagemodels,introduc- ingtherequirementsoninductivereasoningfromthephilosophyofsciencecommunity.Motivatedbytheempiricalexperiencethatlanguagemodelstendtogeneratevagueandnotspecificrules,theyadditionallyproposethefourthrequirement:(4)“rule”shouldbeclearandinenoughdetail.Thefourthrequirementmighthavebeenoverlookedbythephilosophyofsciencecommunitysince it’stooobvious.Motivatedbytherequirements,Yangetal.
[173
]designanoverly-generation-then-filteringmechanism,leveraginglanguagemodelstofirstgeneratemanypreliminaryrulesandthenfilterthosedonotsatisfytherequirements.Thenmethodsaredevelopedtouseself-refinetoreplacefilteringandusemorereasoningstepsforbetterrules
[120,
163,
191,
194
].However,the“rules”thislineofworkstrytoinduceareeitherknownknowledge,ornotscientificknowledgebutsynthesizedpatterns.
Yangetal.
[174
]makethefirstattempttoextendtheclassicinductivereasoningtasksetting(todiscoverknown/syntheticknowledge)intoarealscientificdiscoverysetting:toleverageLLMstoautonomouslydiscovernovelandvalidsocialsciencescientifichypothesesfromthepubliclyavailablewebdata.Specifically,theycollectnews,businessreviews,andWikipediapagesonsocialscienceconceptsasthewebdatatodiscoverhypothesis.
Majumderetal.
[107,
108
]furtherproposetheconceptof“data-drivendiscovery”,whichistodiscoverhypothesesacrossdisciplineswithallthepublicexperimentaldataontheweb(andprivateexperimentaldataathand).Theirmotivationisthatthepotentialofthelargeamountofpubliclyavailableexperimentaldatahasnotbeenfullyexploitedthatlotsofnovelscientifichypothesescouldbediscoveredfromtheexistingdata.
2.3DevelopmentofMethods
Amongthemethodsdevelopedforscientificdiscovery,thereisoneclearmethoddevelopmenttrajectory.Webeginbyintroducingthistrajectory,followedbyanexplorationofothermethods.
2.3.1MainTrajectory.Ingeneral,thismethoddevelopmenttrajectoryforscientificdiscoverycanbeseenasincorporatingmorekeycomponentsintothemethods.Table
1
summarizesthekeycomponentsweidentifyasimportantandindicateswhethereachmethodincorporatesthem.Specifically,theyare“strategyofinspirationretrieval”,“noveltychecker”,“validitychecker”,“claritychecker”,“evolutionaryalgorithm”,“leverageofmultipleinspiration”,“rankingofhypothesis”,and“automaticresearchquestionconstruction”.Here,each“keycomponent”referstoadetailedanduniquemethodologythathasproveneffectiveforscientificdiscoverytasks.Weexcludebroadgeneralconceptsthatmayintuitivelyseemhelpfulbutit’snotclearhowaspecificmethodfromtheconceptcanbeeffectiveforthistask(e.g.,toolusage).Next,weintroducethesekeycomponents.Foreachkeycomponent,weuseoneortwoparagraphstogiveashortoverview,summarizingitsdevelopmenttrace.ThereferenceinformationforeachmethodmentionedinthissectioncanbefoundinTable
1.
6LuoandYangetal.
Preprint.
InspirationRetrievalStrategy.Inadditiontorelyingonbackgroundknowledge,literature-baseddiscovery(LBD)facilitatestheretrievalofadditionalknowledgeasasourceofinspirationforformulatingnewhypotheses.SciMON
[159
]firstintroducestheconceptsofLBDtothediscoverytask,demonstratingthatnewknowledgecanbecomposedoflinkageofexistingknowledge.Itisvitalthattheinspirationshouldnotbeknowntoberelatedtothebackgroundbefore,oratleastshouldnotbeusedtoassociatewiththebackgroundinaknownway
[176
].Otherwise,thehypothesiswouldnotbenovel.
Inspiredbythe“ABC”modelinclassicLBDformalization,givenabackgroundknowledge,SciMONretrievessemanticallysimilarknowledge,knowledgegraphneighbors,andcitationgraphneighborsasinspirations.Specifically,twoknowledgeareidentifiedas“semanticallysimilar”iftheirembeddingsfromSentenceBERT
[127
]havehighcosinesimilarity;Theknowledgegraphtheybuiltfollowsa“[method,used-for,task]”format.ResearchAgentstrictlyfollowsthe“ABC”modelbyconstructingaconceptgraph,wherealinkrepresentsthetwoconnectedconceptnodeshaveappearedinthesamepaperbefore.Itretrievesinspirationconceptsthatareconnectedwiththebackgroundconceptsontheconceptgraph(conceptco-occurence).Scideatorretrievesinspirationpapersbasedonsemanticmatching(semanticscholarAPIrecommendations)andconceptmatch-ing(paperscontainingsimilarconceptsinthesametopic,samesubarea,anddifferentsubarea).SciPIP
[164
]retrievesinspirationsfromsemanticallysimilarknowledge(basedonSentenceBERT),conceptco-occurence,andcitationgraphneigbors.Itproposesfilteringmethodstofilternotusefulconceptsforconceptco-occurenceretrieval.
Differentfromselectingsemanticorcitationneighborsasinspirations,SciAgentsrandomlysampleanotherconceptthatisconnectedwiththebackgroundconceptinacitationgraph(viaalongorshortpath)astheinspiration.
MOOSE
[174
]proposestouseLLM-selectedinspirations:giventheresearchbackgroundandsomeinspirationcandidatesinthecontext,andaskanLLMtoselectinspirationsfortheresearchbackgroundfromthecandidates.ThenMOOSE-Chem
[176
]alsoadoptsit.MOOSE-Chemassumesthataftertrainingonhundredsofmillionsofscientificpapers,themostadvancedLLMsmightalreadyhaveacertainlevelofabilitytoidentifytheinspirationknowledgeforthebackgroundtocomposeanoveldiscoveryofknowledge.MOOSE-Chemanalyzesthisassumptionbyannotating51chemistrypaperspublishedin2024(whichareonlyavailableonlinein2024)withtheirbackground,inspirations,andhypothesis,andseewhetherLLMswithtrainingdataupto2023canretrievetheannotatedinspirationsgivenonlythebackground.Theirresultsshowaveryhighretrievalrate,indicatingthattheassumptioncouldbelargelycorrect.ThenNovaalsoadoptsLLM-selectedinspirations,withthemotivationthatleveragingtheLLM’sinternalknowledgetodetermineusefulknowledgefornewideasshouldbeabletosurpasstraditionalentityorkeyword-basedretrievalmethods.
FeedbackModules.Thenextkeycomponentistheiterativefeedbackonthegeneratedhypothesesintheaspectsofnovelty,validity,andclarity.ThesethreefeedbacksarefirstproposedbyMOOSE,motivatedbytherequirementsforahypothesisininductivereasoning
[113,
173
].Thesethreeaspectsareobjectiveenoughtogivefeedback,andeachofthemisessentialforagoodhypothesis.
•NoveltyChecker.Thegeneratedhypothesesshouldbeanovelfindingcomparedtotheexistingliterature.Whenahypothesistendstobesimilartoanexistinghypothesis,feedbackonenhancingitsnoveltycouldbebeneficialforhypothesisformulation.ExistingmethodsfornoveltyfeedbackareallbasedonLLMs.Ingeneral,therearethreewaystoprovidenoveltyfeedback.Thefirstmethodevaluateseachgeneratedhypothesisagainstarelatedsurvey(MOOSE);theseconditerativelyretrievesrelevantpapersforcomparison(SciMON,
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch7
Preprint.
Table1.DiscoveryMethods.Here“NF”=NoveltyFeedback,“VF”=ValidityFeedback,and“CF”=ClarityFeedback,“EA”=EvolutionaryAlgorithm,“LMI”=LeveragingMultipleInspirations,“R”=Ranking,“AQC”=AutomaticResearchQuestionConstruction.Theorderofmethodsreflecttheirfirstappearancetime.
Methods
InspirationRetrievalStrategyNFVFCFEALMIRAQC
SciMON
[159]
MOOSE
[174]
MCR
[145]
Qi
[119]
FunSearch
[130]
ChemReasoner
[146]
HypoGeniC
[193]
ResearchAgent
[9]
LLM-SR
[140]
SGA
[105]
AIScientist
[103]
MLR-Copilot
[84]
IGA
[141]
SciAgents
[41]
Scideator
[121]
MOOSE-Chem
[176]
VirSci
[148]
CoI
[77]
Nova
[49]
CycleResearcher
[167]
SciPIP
[164]
-
-
Semantic&Concept&CitationNeighbors√
√
√
LLMSelection√
-
√
√
√
√
√
√
√
√
√
-
-√
-
-
-
√
ConceptCo-occurrenceNeighbors√
-
-
-
-√
-
-
--
-
-
--
√
-
RandomSelection√
-
-
√
√
√
√
Semantic&ConceptMatching√
-
-
LLMselection√-√-√
-
-
LLMselection-
-
-
--
-
-
Semantic&Concept&CitationNeighbors-
-
-
-
-
-
-
-
-
√
-
-
-
√
-
√
-
-
√
-
-
√
-
-
-
√
√
√
-
√
-
-
-
√
-
-
-
-
-
√
-
-
-
-
-
-
√
√
√
-
-
-
-
-
-
-
√
-
-
-
√
-
-
-
-
√
-
-
-
-
-
-
-
-
√
√
-
-
-
-
√
√
-
-
-
SciAgents,Scideator,CoI);thethirddirectlyleveragestheinternalknowledgeofLLMsforevaluation(Qi,ResearchAgent,AIScientist,MOOSE-Chem,VirSci).
•ValidityChecker.Thegeneratedhypothesesshouldbevalidscience/engineeringfindingsthatpreciselyreflecttheobjectiveuniverse
[113]
.Arealvalidityfeedbackshouldbefromtheresultsofexperiments.However,itistime-consumingandcostlytoconductexperimentsforeachgeneratedhypothesis.Therefore,currently,validityfeedbackalmostentirelyreliesontheheuristicsofLLMsorothertrainedneuralmodels.TheexceptionsareFunSearch,HypoGeniC,LLM-SR,andSGA.Specifically,FunSearchisaboutgenerat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学古诗词教学设计与课堂实施参考
- 2026届山东省青岛西海岸新区第四中学物理九上期中经典模拟试题含解析
- 班主任学期工作计划范本及模板
- 教师招聘考试班级管理模拟题
- 浙江省杭州下城区五校联考2026届物理九年级第一学期期末学业水平测试试题含解析
- 取保候审法律文书模板
- 新媒体运营基础理论考试题
- 职业院校毕业生就业状况分析
- 雅思小作文模板写作技巧大全
- 新产品开发流程及项目管理实务指南
- 热力公司安全检查表
- 2025年宁东基地管委会公开招聘党建指导员考试笔试备考试题及答案解析
- 2025宁都县源盛公用事业投资发展有限公司招聘员工9人笔试考试备考题库及答案解析
- 2025年基层社会治理教育培训考试试题及答案
- 2025版农药中毒常见症状及护理指导培训
- 人教版(2024)三年级上册数学称重大挑战课件
- 2025辽宁沈阳市和平区招聘社区工作者61人考试参考试题及答案解析
- 2025年动物科学专升本真题试卷(含答案)
- 2025年《职业病防治法》试题库及答案(新版)
- 工业金属管道安装质量检查表
- 新保密法宣传课件
评论
0/150
提交评论