版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BISWorkingPapersNo1251
Consumerfinancialdataandnon-horizontalmergers
byLindaJeng,JonFrost,ElisabethNobleandChrisBrummer
MonetaryandEconomicDepartment
March2025
JELclassification:E21,G34,K21,L41,O32
Keywords:antitrust,bigdata,bigtech,competition,data,financialdata,financialservices,mergers,openbanking,opendata,openfinance,payments,personaldata,privacy
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.
ThispublicationisavailableontheBISwebsite
()
.
©BankforInternationalSettlements2025.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)
ISSN1682-7678(online)
1
ConsumerFinancialDataandNon-HorizontalMergers
March2025
0F
Authors:LindaJeng,JonFrost,ElisabethNobleandChrisBrummer1
Abstract
Thisarticleexploresthepotentialcompetitiveimplicationsofnon-horizontalmergerswheretheyinvolveextensiveconsumerdata,includingconsumerfinancialdata.Asdatabecomeincreasinglycentraltofirmstrategy,mergersbetweendata-richfirms,whilepotentiallyleadingtopositiveoutcomes,canalsocreatemarketpowerinwaysnotentirelyaccountedforbytraditionalantitrusttheory.Thearticleconsiderssomeoftheseimplications.Itintroducesnewmetricsforvaluingdatasetsheldbymergingfirmsthatcouldhelpcompetitionauthoritiesevaluatemarketimpactsmoreeffectively.Thearticlethensuggestspotentialtoolstomitigateanti-competitiveeffectsofdata-richmergers.Itadvocatesforfurtherresearchtoadaptcompetitionpolicytodata-centricmergers,allwithaviewtomaintainingopen,innovativeandcompetitivemarketsinthedigitalanddataeconomy.
Keywords:antitrust,competition,bigdata,verticalmergers,non-horizontalmergers,bigtech,datasharing,dataconcentration,dataaggregation,financialservices,dataprivacy,consumerfinancialdata,openbanking,opendata,openfinance,personaldata,economicsofdata
1TheviewsexpressedherearethoseoftheauthorsanddonotnecessarilyreflectthoseoftheBankforInternationalSettlements(BIS),EuropeanBankingAuthority(EBA),oranyotheraffiliatedinstitution.Examplesfromindividualfirmsareusedforillustrationandshouldnotbeconstruedasaformallegalopinionaboutthesespecificcases.TheauthorswishtothankCarolinaAbate,OscarBorgogno,RossBuckley,PabloIbáñezColomo,ScottFarrell,VikramHaksar,DarylLim,PhilippPaech,NoahPhillips,MatteoMannino,LauraVeldkamp,participantsofresearchseminarsattheBISandtheUKFinancialConductAuthority(FCA),andananonymousreviewerfortheirinvaluablefeedback.WethankGeorgeSakkopoulosforresearchassistanceandeditorialsupport,GiulioCornelli,CeciliaFrancoandHaiweiCaofordatasupport,andKarlaPatriciaRamirezSanchezandAlessiaTortatoforeditorialsupport.
Thispaperisadraft.AfinalversionisforthcomingintheFordhamJournalofCorporate&FinancialLaw.
2
I.Introduction:EconomicsofDataandMergersinthePaymentsSector
Mergersareamongthemostconsequentialeconomictransactionsinthefinancialmarketplace.Theyallowfirmstodiversifyandspreadriskacrossdifferentrevenuestreamsortostrengthentheirpositionsinspecificmarkets.Theyalsoprovideanalternativeforfirmsseekingtoscaleormovedirectlyintonewindustrysegmentsandmarketswheretheyhavelittlepriorexpertiseorresources.
1F
2F
3F
Globally,mergerandacquisition(M&A)dealssetarecordin2021with62,590transactions,passing$5trillionUSDintotaldealvalue(breakingthe2007recordof$4.2trillion).2In2022,totaldealvaluefellto$3.63trillion—muchlowerthanthepreviousyear,butstillsurpassingthe2017($3.44trillion)and2020($3.42trillion)totals.3(2023sawafurtherdeclineasglobalM&Adealvolumesfailedtobreakthe$3trillionmarkforthefirsttimeinadecade).4
4F
5F
Mergersfallintotwomaincategories:(1)horizontaland(2)non-horizontal.5Horizontalmergersinvolvetwocompetingfirmsthatproduceandsellthesameproductsandaregenerallypresumedtoreducecompetition.Non-horizontalmergers,meanwhile,involvefirmsthatoperateatdifferentpointsalongthesupplychainorincomplementarysectors.6
6F
Becausenon-horizontalmergersdonotdirectlyreducecompetitioninthesamemarket,theyhavetraditionallyreceivedlessscrutiny.7However,thisischangingasaccesstodata
2NiketNishant&NiketNishant,GlobalM&AVolumesHitRecordHighin2021,Breach$5TrillionforFirstTime,REUTERS,Dec.31,2021,
/markets/us/global-ma-volumes-hit-record
-high-2021-breach-5-trillion-first-time-2021-12-31/.
3Id.
4EmilyRouleau,ANALYSIS:DespiteQ4Boost,2023M&ADealVolumesDisappoint,BLOOMBERG,Jan.9,2024,
/bloomberg-law-analysis/analysis-despite-q4-boost-2023-m-a-deal
-volumes-disappoint
5OECD,OECDGLOSSARYOFSTATISTICALTERMS(2008),
/en/publications/oecd
-glossary-of-statistical-terms_9789264055087-en.html.Non-horizontalmergersareacatch-allcategorythatcoversmergerswithelementsofverticalintegration,conglomerateeffects,orboth,andmayalsocontainelementsofhorizontalintegration.Non-horizontalmergersandtheoriesofharmarediscussedinacontextparticularlyrelevantforthispaperintheOECD2023,TheoriesofHarmforDigitalMergers,293(2023),
/daf/competition/theories-of-harm-for-digital-mergers-2023.pdf.Foradefinitionofvertical
andconglomeratemergers
(togetherreferredtoas“non-horizontalmergers”),seeCommissionCommunicationGuidelinesontheassessmentofnon-horizontalmergersundertheCouncilRegulationonthecontrolofconcentrationsbetweenundertakings,2008O.J.C265/6,paras.4–5,
https://eur
-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52008XC1018%2803%29.
6OECDGlossary,supranote5.
7StevenC.Salop,InvigoratingVerticalMergerEnforcement,127YaleL.J.1962(2018),andseegenerally,U.S.DEP’TOFJUSTICE,MergerGuidelines§4.0(1984)(“Althoughnonhorizontalmergersarelesslikelythanhorizontalmergerstocreatecompetitiveproblems,theyarenotinvariablyinnocuous.”).
3
7F
andtechnologicalcapabilitiesareshowntoincreasinglyimpactcompetitionacrossthedigitalanddataeconomy.8
8F
Businessmodelshaveevolvedtoharnessdatatocustomizethemarketinganddistributionofproductsandservicestoconsumers.9Andmanylargemergingfirmscollect(orhaveaccessto)vastamountsofdataontheircustomersaspartoftheirrespectivebusinessmodels.Moreover,manyseektoacquiredata-richfirmssuchasdataaggregators,withaviewtodeepeningorexpandingconsumerdatapoolsacrosssectorsandsegments,leadingtomorenon-horizontalmergers.
Togetasenseastotheriseofdata-drivennon-horizontalmergers,itisinstructivetoconsiderpaymentssectormergertransactionsoverthelastdecade(Graph1).Duringthisperiod,thelargestmergers(bypurchaseprice)havebeenhorizontal(i.e.,dealsinwhichadirectcompetitorisacquiredinthesamemarket)(bluedots).Yetnon-horizontalmergers(reddots)increasedsignificantlyinfrequency,size,aswellasvalueoftheacquirer.Moreover,non-horizontalmergersincludedtheverylargestacquirers(dotsize).Wethusseethatthereisanuptickinnon-horizontalmergersbetweenpaymentandnon-paymentfirms.
8UNITEDNATIONSCONFERENCEONTRADEANDDEVELOPMENT,AssessmentofDominanceorSignificantMarketPower,U.N.Doc.UNCTAD/DITC/CPLP/54(2021),
/system/files/official
-document/ciclpd54_en.pdf
9Indeed,suchisthemarketpowerthatcanbederivedfromdataaccessthat,insomejurisdictions,policymeasureshavebeenpromulgatedtomandate,withtheexpressconsentofconsumers,theflowofcertaintypesofdatafromtheoriginalholdertoapotentialcompetitor.‘Openbanking’initiativesareonesuchexample,tofacilitatetheflowofpaymentaccountsandotherdatafrombankstothirdpartyfirms–typicallyfinancialtechnologyfirms(fintechs).Theaimisoftentoreduceswitchingcostsandenhancecompetition.SeeBASELCOMMITTEEONBANKINGSUPERVISION,SoundPractices:Implicationsoffintechdevelopmentsforbanksandbanksupervisors(BankforInternationalSettlements,Feb.2018),
/bcbs/publ/d431.pdfandPaulAdams
,StefanHunt,ChristopherPalmerandRedisZaliauskas,Testingtheeffectivenessofconsumerfinancialdisclosure:Experimentalevidencefromsavingsaccounts,141J.FIN.ECON.1(2021).
Graph1.MergerTransactionsinthePaymentsSectorHaveProliferated
4
PurchasepriceinmillionsofUSdollars,logarithmicscale
Dataupto30May2024.
EachdotrepresentsamergertransactionbyAntFinancial,FidelityNationalInformationServices(FIS),FISERV,GlobalPayments,Mastercard,PayPal,Block(formerlySquare)orVisaascollectedbyPitchBookandRefinitivEikon.Thisexcludesdivestituresandintra-firmoperations.
Mergertransactionsareclassifiedas“non-horizontal”whentheacquiringfirmandthetargetfirmoperateatdifferentstagesalongthesamepaymentchain,asdeterminedbyfirmreports.In“horizontal”mergers,theacquiringandtargetfirmsaredirectcompetitorsinatleastonekeybusinessline.
Theheightofdotsreferstothepurchaseprice,andthesizeofdotstothevalueoftheacquiringfirm.Thesizeofeachdotisproportionaltotheacquiringfirm’smarketcapitalizationonthedayofthedealor,inthecaseofAntFinancial,thevaluationofAntFinancialasofend-2018,multipliedbychangesinthemarketcapitalizationofAlibabaHoldingsrelativetoend-2018.Sources:BIS;PitchBookData,Inc.;RefinitivEikon;authors’elaboration.
9F
10F
Importantly,non-horizontalmergersinthepaymentssectorarenotinherentlyproblematic.Insomeinstances,theycandriveefficiency,innovation,andevenbetterconsumerservices.10Forexample,insomecircumstancesmergersmightallowfirmstoofferfinancialservicesinwaysthatarebetterintegrated,andwhichofferseamlessuserexperienceandlowercosts.Thisisespeciallythecasewheremergerscombinecomplementarycapabilities,suchaspaymentprocessinganddataanalytics.Meanwhile,inothercases,mergersmightheightenfinancialinclusionbyenablingfirmstoleveragemorediversedatasourcestounderstandandserveclientshailingfromtraditionallyexcludedsegmentsofthepopulation.11
Butnon-horizontalmergers(whetherinthepaymentssectororotherwise)maynotalwayscontributepositivelytosocietyormarkets—andinsomecases,theycancauseanti-
10SeeMergerGuidelines,supranote7,§4.0.
11SeeBASELCOMMITTEEONBANKINGSUPERVISION,supranote9,andKarenCroxson,JonFrost,LeonardoGambacorta&TommasoValletti,Platform-BasedBusinessModelsandFinancialInclusion:PolicyTrade-OffsandApproaches,19J.COMPETITIONL.&ECON75(2023).
5
11F
competitiveeffects.Aswediscussinmoredetailbelow,mergersenablehighlytargetedmarketing,pricediscrimination,andpredictiveanalyticsthatrivalswithoutaccesstosimilardatacannotmatch.Consumerdatacangrantauniquecompetitiveadvantagethatcanleadtoanti-competitiveoutcomes,asthemergedentitymightpreventotherfirmsfromaccessingnecessarydata,limitinginnovationandraisingbarriersformarketentry.12
12F
13F
Regulatorsarealreadyanticipatingthesechallengesbydirectingregulatoryrulemakingtowardsunlockingdataportabilityandpromotingopenbanking.13Inmanyjurisdictions,competitionandfinancialregulatoryauthoritiesviewedtheage-oldbankpracticeofkeepingcustomerdatatothemselvesasahindranceagainstcompetition.14Toincreasecompetitioninthebankingsector,manyjurisdictionsnowrequirebankstosharecustomerdatawithexternalpartieswhenthecustomerhasgivenpermission.However,inthispaper,welookmorebroadlytoconsiderthepotentialcompetitiveeffectsofdataaccessviamergersandofferpotentialmetricstoenhancehowtheseeffectscanbeassessedandmitigated.
Thepaperisorganizedasfollows.PartIIexaminesthewaysinwhichdataaggregationinfluencesmarketpower,highlightinghowaccesstoconsumerdatacanenhance
12SeeOECDGlossary,supranote5.
13SeegenerallyOPENBANKING(LindaJenged.,2022).TheEuropeanUnion(andtheUnitedKingdom,aformerMemberStateoftheEU)haveimplementedtheRevisedPaymentServicesDirective(PSD2)whichaimstoincreasecompetitioninthepaymentssectorandimproveconsumerprotectionby,amongotherthings,establishinganewframeworktofacilitateaccesstopaymentaccountsdata.SeeEU’sDirective2015/2366oftheEuropeanParliamentandoftheCouncilof25November2015onPaymentServicesintheInternalMarket,2015O.J.(L337)35andtheUK’sPaymentServicesRegulations2017,SI2017/752(UK).IntheEU,anewlegislativeproposaltofacilitatethesharingofcertainothertypesoffinancialdata(ProposalforaRegulationoftheEuropeanParliamentandoftheCouncilonaframeworkforFinancialDataAccessandamendingRegulations(EU)No1093/2010,(EU)No1094/2010,(EU)No1095/2010and(EU)2022/2554COM/2023/360final(FIDA))wasannouncedbytheEuropeanCommissioninJune2023.TheUnitedStatesrecentlyjoinedtheranksofjurisdictionsrequiringdata-sharingbybanks.OnOctober22,2024,theConsumerFinancialProtectionBureaufinalizeditsPersonalFinancialDataRightsRule.SeeConsumerFinancialProtectionBureau,FinalRule,RequiredRulemakingonPersonalFinancialDataRights,89Fed.Reg.90838(Nov.18,2024)(tobecodifiedat12C.F.R.pts.1001,1033),andthePressRelease,ConsumerFin.Prot.Bureau,CFPBFinalizesPersonalFinancialDataRightsRuletoBoostCompetition,ProtectPrivacy,andGiveFamiliesMoreChoiceinFinancialServices(Oct.22,2024),
/about
-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/.
14Forinstance,in2016theUnitedKingdomCompetitionandMarketsAuthority(CMA)publishedamarketinvestigationreportentitledRetailBankingmarketinvestigation:Finalreport,whichconcluded,amongothers,thatinordertoaddressadverseeffectsoncompetitionwithinthelendingindustryinGreatBritainandNorthernIrelandanintegratedpackageofremediesshouldbeimposedinwhichasetofmeasurestargetedatenhancingsmall-mediumenterprisesaccesstoinformationwouldbeprovided.SeeCOMPETITION&MARKETSAUTHORITY,RetailBankingMarketInvestigation:FinalReport(Aug.9,2016)
.uk/media/57ac9667e5274a0f6c00007a/retail-banking-market
-
investigation-full-final-report.pdfandCMA,TheRetailBankingMarketInvestigationOrder2017(Feb.2,2017),
.uk/media/5893063bed915d06e1000000/retail-banking-market
-investigation-order-2017.pdf.
6
competitivepositioningthroughpersonalizedofferings,pricediscriminationandinnovation.PartIIIprovidesexamplesofcurrentapproachestotheassessmentofdata-drivenmergersanddata-basedtheoriesofharmbycitingmergersreviewedbycompetitionauthoritiesintheUnitedStates(US)andEuropeanUnion(EU).PartIVproposesnewmetricstoassistregulatorsbetterassesswhethermergeddatasetscouldleadtoanti-competitivepracticesandconsumerharm,andhighlightsmeasuresofdatacomplementarity,populationcoverage,andconsumeroverlap.PartVthenconcludesbyofferingrecommendationsforfutureresearchandpolicydevelopment.
II.PotentialImpactofDataAccessonCompetition
14F
15F
Tounderstandhowdata-drivenmergerspotentiallyreshapecompetition,itiscrucialtoexaminetheuniqueeconomicfeaturesofdata.Inthispart,wesummarizethesefeaturesandexploreseveralwaysinwhichdatacanimpactcompetitionconsiderations.Unliketraditionalassets,dataarenon-rival.Inotherwords,aslongasthedataremainvalid,theycanbereusedandrecombinedwithoutlosingvalue.15Thisflexibility,combinedwithadvancementsindataanalyticsandartificialintelligence(AI),enablesfirmstoextractnew,valuableinsightsthatcandrivemarketadvantage.Recognizingtheseeconomicfeaturesofdataexplainswhydataaresuchapowerfulassetandwhytheroleofdatainnon-horizontalmergerswarrantsgreaterscrutiny.16
a.EconomicFeaturesofData
16F
Dataareacriticaleconomicinput.Theyenablefirmstoderiveinsightsintomarketdynamics,optimizeoperations,andinnovate.Theircentralitystemsfromtheirparticularqualitativefeatures,alongsidethetechnologicaladvancementsthathavemadethemincreasinglyaccessibleandvaluable.17Amongthem,overrecentdecades,theavailabilityofdatahasexplodedastheproductoftechnologicaltrends.First,thecostsofcollectingandstoringdata,facilitatingthedigitizationofeverydayeconomicandsocialactivities
15CharlesI.Jones&ChristopherTonetti,NonrivalryandtheEconomicsofData,110Am.Econ.Rev.2819
(2020).Ofcourse,thenotionthatdataarenon-rivalhadbeendiscussedpreviously.Foroneexample,seeHalVarian,ArtificialIntelligence,Economics,andIndustrialOrganization,inAjayK.Agrawal,JoshuaGans,andAviGoldfarb(eds),TheEconomicsofArtificialIntelligence:AnAgenda,UniversityofChicagoPress(2018).
16Foradiscussionofhowfirmsusedataintoday’seconomiestocreatevalueandcompete,seeDirectorate-GeneralforCompetition,EC,ProtectingCompetitioninaChangingWorld—EvidenceontheEvolutionofCompetitionintheEUDuringthePast25Years:COMP.PA01—Ex-PostEconomicEvaluationofCompetitionPolicy,(Jul.1,2024),
https://op.europa.eu/en/publication-detail/-/publication/c03374f1-3833-
11ef-b441-01aa75ed71a1.
17Foranoverview,seegenerally,JosephE.Stiglitz,InformationandtheChangeintheParadigminEconomics,92AM.ECON.REV.460(2002).SeealsoYanCarriere-Swallow&VikramHaksar,TheEconomicsandImplicationsofData:AnIntegratedPerspective(InternationalMonetaryFundDepartmentalPaperNo.2019/013,Sept.2019),
/en/Publications/Departmental-Papers-Policy
-Papers/Issues/2019/09/20/The-Economics-and-Implications-of-Data-An-Integrated-Perspective-48596.
7
17F
18F
19F
havefallensignificantlyastechnologymoregenerallyhasadvanced.18Second,advancesinartificialintelligenceandmachinelearning(AI/ML)aremakingiteasiertoquicklyprocesslargeamountsofdatatoextractgreatervalue.19Thesetechnologicaladvancementshavedrivenmanyofthemostvaluablepublicly-tradedfirmstoincludedatacollectionandprocessingaskeycomponentsoftheirhighlyprofitablebusinessmodels.20
20F
21F
Theeconomicfeaturesofdatafurtheramplifytheirvalue.Non-rivalrydistinguishesdatafromtraditionalinputslikelabor,capital,ornaturalresources,whichareinherentlyrival.21Moreover,dataareinherentlydecomposableandpossessrecombinantproperties:theycanbecombinedwithotherdatasetstocreateentirelynewdatasetswithdifferenteconomicvalue,offeringunparalleledopportunitiesforinnovation.22
22F
23F
24F
25F
Thereisextensiveliteratureontheeconomicsofinformationandtheimportanceofinformationaccessincompetition.23Thesharingofinformation(orlackthereof)determineswhichpartieshaveaccesstoinformationandwhichdonot.24Theseinformationasymmetriescanprovidemarketadvantages.Thus,reducinginformationasymmetriescanleadtogreatercompetitionandmarketefficiency.25Moreover,theeconomicvalueofdatacangrow.Thiseconomicvalueisderivedfromtwoprimaryeconomicfunctionsofdata–asinputsintotheproductionofagoodorserviceandasinformationshiftersacrosseconomicagents.26
18MaryamFarboodi,RoxanaMihet,ThomasPhilippon&LauraVeldkamp,BigDataandFirmDynamics(Jan.14,2019)(unpublishedmanuscript),
/sol3/papers.cfm?abstract_id=3334064
.Theyauthorsemphasizethatmarginalcostsofdatacollectionareverylowwheredataaregeneratedasabyproductofeconomicactivity.
19SeegenerallyAjayAgrawal,JoshuaGans&AviGoldfarb,PREDICTIONMACHINES:THESIMPLEECONOMICSOFARTIFICIALINTELLIGENCE(2018).ForaconsiderationofAIinmergers,seeDirectorate-GeneralforCompetition,EC,CompetitioningenerativeAIandvirtualworlds(KlausKowalski,CristinaVolpin&ZsoltZomborieds.,Sept.23,2024),
https://op.europa.eu/en/publication-detail/-
/publication/5530c8ca-7a1f-11ef-bbbe-01aa75ed71a1/language-en.
20IntheirOctober2020quarterlyreportfiledwiththeU.S.SecuritiesandExchangeCommission,Alphabet(theparentfirmforGoogleInc.)reportedadvertisingrevenuesof$37.1billion—generatedbythefirm’sdata-drivenadtargetingservices—makingupabout80%oftotalrevenues.SeePressRelease,Alphabet,Inc.,AlphabetAnnouncesSecondQuarter2020Results(July30,2021),
/Archives/edgar/data/1652044/000165204420000031/googexhibit991q22020.htm
.
21Jones&Tonetti,supranote15.
22Carriere-Swallow&Haksar,supranote17.
23Seegenerally,Stiglitz,supranote17andCarriere-Swallow&Haksar,supranote17.
24Datasharingcanbeparticularlycomplexinthecaseofplatformsthatmatchtwodistinctgroupsofcustomersinso-calledtwo-sidedmarkets.Here,informationfromonesideofthemarket(e.g.,users)maybequiterelevanttotheotherside(e.g.,merchants).SeeJean-CharlesRochet&JeanTirole,Two-SidedMarkets:AProgressReport,37RANDJ.ECON.645(2006).
25JulianeBegenau,MaryamFarboodi&LauraVeldkamp,BigDatainFinanceandtheGrowthofLargeFirms,97J.MONETARYECON.71(2018)andseealsoRochet&Tirole,supranote24.
26Carriere-Swallow&Haksar,supranote17.
8
b.PotentialCompetitionEffectsofDataSharing
26F
Theutilityofdataforanygivenfirmordatauserwillnotbeuniversal.Instead,itwillbecontext-dependentandvarybyindustry,especiallyinthecaseofnon-horizontalmergers.27Basedonageneralsurveyofeconomicliterature,weidentifyfourpotentialeffectsthatdataaccessmayhaveoncompetition.Thislistisnotexhaustivebutillustrateshowdataaccessanddataaggregationcanaffectmarketpowerandcompetition.
i.ImprovedServicesandProducts
27F
Mergersofdata-richfirmsthatenhancethepoolingofdatacancreateusefulopportunitiestoenhanceefficiencyandsocialwelfare.28Forexample,greateraccesstodataaboutaclientmayallowafirmtooffermoreconvenient,personalizedproductsthatmeettheclient’sneedsmoreeffectively.Moreover,theuseofmergedsetsofcomplementaryconsumerdatamayenableextremelyaccuratepredictionsofconsumerfinancialbehavior.Suchpredictionsmayallowthepost-mergerentitytooffernew,moretailored,andbetterpricedfinancialproductsandservicestoconsumers,suchasinvestmentadvice.Thismaythenfacilitatebetteravailabilityofproductsandservices,andchoiceforconsumers.
28F
Asafurtherexample,improveddataaccessfromdifferentsourcesmayfacilitatemoreaccurateassessmentsofcreditworthiness,potentiallyenablingthebetterservicingoftraditionallyunderservedmarketsegments.29Thismayresultingreaterdifferentiationofcreditpricing,whichwouldbenefitborrowerswithlowcreditrisk,whilemeaninghigherratesforriskierborrowers.Frostetal(2019)showthatanArgentinebigtechlendercan
27Forinstance,insomemarkets,databrokerscollectinformationfromalternativesourcestocreateoutputsforclients,suchasdigitalconsumerprofilesforadtargeting.Neumannetal(2019)showthat,despitethesophisticationofthemethodsusedthese,canbequiteinaccurateandeconomicallyunattractive.SeeNicoNeumann,CatherineE.Tucker&TimothyWhitfield,Frontiers:HowEffectiveIsThird-PartyConsumerProfiling?EvidencefromFieldStudies,38Mktg.Sci.6(2019).Conversely,forconsumercredit,JagtianiandLemieux(2019)findthattheuseofalternativedatafromnon-traditionalsourceshelpstopredictloandefault.Theuseofsuchdataallowedsomeborrowerstoobtainlowerpricedcredit.Howthecombinationofdifferentdatasetswillworkinpracticethusdependsonspecificitiesoftheindustryanddatasetinquestion.SeeJulapaJagtiani&CatherineLemieux,TheRolesofAlternativeDataandMachineLearninginFinTechLending:EvidencefromtheLendingClubConsumerPlatform,48Fin.Mgmt.1009,1009–29(2019),
/10.1111/fima.12295
.
28Indeed,inviewofthesepotentialbenefits,somejurisdictions,suchastheEUandtheUK,havebroughtforwardspecificpolicymeasurestofacilitatethesharingofpersonaldataattherequestofcustomers(i.e.,openbanking).Thesemeasureshavehelpedtoopenupthefinancialservicessectortonewentrants,includingfintechsandbigtechs.Thesenewentrantsarenowcompetingwithbanksallalongthefinancialservicesvaluechain,notablypayments.SeeBASELCOMMITTEEONBANKINGSUPERVISION,supranote9.
29ZhiguoHe,JingHuang&JidongZhou,OpenBanking:CreditMarketCompetitionWhenBorrowersOwntheData(NBERWorkingPaperNo.w28118,2020),
/abstract=3735686
.
9
29F
usedatafromitse-commerceplatformtomoreaccuratelypredictdefaultandserveborrowerswhowereexcludedfrombankcredit.30
ii.MarketDominanceandPriceDiscrimination
30F
Despitethesepossibleadvantages,mergersofdatainvolveclassicconcernsofconcentrationsofeconomicpower.Aseconomiesbecomeincreasinglydata-driven,thereisgrowingresearchestablishinghowtheaggregationofnewcombinationsofconsumerdata(potentiallyvianewdatasharingpoliciesandpractices)canconveycompetitiv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国家定点医疗机构江山路社区卫生服务中心招聘10人备考题库含答案详解
- 2026年城发水务(长垣市)有限公司招聘备考题库及一套答案详解
- 2026年1月扬州市江都区大桥中心卫生院公开招聘编外合同制护理人员备考题库及一套答案详解
- 2026年凯欣粮油有限公司招聘备考题库完整答案详解
- 2026年中旅保险经纪有限公司招聘备考题库及答案详解参考
- 2026年辽宁省普通高中学业水平合格性考试沈阳市数学模拟试卷(一)【含答案详解】
- 审计师内控制度规定
- 账务室内控制度
- 保险公司运营内控制度
- 养老基金管理内控制度
- 2025年新修订版《森林草原防灭火条例》全文+修订宣贯解读课件(原创)
- 2025年秋鲁教版(新教材)小学信息科技三年级上册期末综合测试卷及答案(三套)
- 工业设计工作流程及标准教程
- 2025年放射技师考试真题及答案
- 《好睡新的睡眠科学与医学》阅读笔记
- GB 20101-2025涂装有机废气净化装置安全技术要求
- 熔铝炉施工方案及流程
- 折弯工技能等级评定标准
- 全屋定制家具合同
- 2025年私人银行行业分析报告及未来发展趋势预测
- (正式版)DB32∕T 5179-2025 《智能建筑工程检测与施工质量验收规程》
评论
0/150
提交评论