




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Knowledgediscovery&datamining
Tools,methods,andexperiencesFoscaGiannottiand
DinoPedreschiPisaKDDLabCNUCE-CNR&Univ.Pisahttp://www-kdd.di.unipi.it/Atutorial@EDBT2000EDBT2000tutorial1Konstanz,March2000ContributorsandacknowledgementsThepeople@PisaKDDLab:FrancescoBONCHI,GiuseppeMANCO,MircoNANNI,ChiaraRENSO,SalvatoreRUGGIERI,FrancoTURINIandmanystudentsThemanyKDDtutorialistsandteacherswhichmadetheirslidesavailableontheweb(allofthemlistedinbibliography);-)Inparticular:JiaweiHAN,SimonFraserUniversity,whoseforthcomingbookDatamining:conceptsandtechniqueshasinfluencedthewholetutorialRajeevRASTOGIandKyuseokSHIM,LucentBellLabsDanielA.KEIM,UniversityofHalleDanielSilver,CogNovaTechnologiesTheEDBT2000boardwhoacceptedourtutorialproposalKonstanz,27-28.3.20002EDBT2000tutorial-IntroTutorialgoalsIntroduceyoutomajoraspectsoftheKnowledgeDiscoveryProcess,andtheoryandapplicationsofDataMiningtechnologyProvideasystematizationtothemanymanyconceptsaroundthisarea,accordingthefollowinglinestheprocessthemethodsappliedtoparadigmaticcasesthesupportenvironmenttheresearchchallengesImportantissuesthatwillbenotcoveredinthistutorial:methods:timeseries,exceptiondetection,neuralnetssystems:parallelimplementationsKonstanz,27-28.3.20003EDBT2000tutorial-IntroTutorialOutlineIntroductionandbasicconceptsMotivations,applications,theKDDprocess,thetechniquesDeeperintoDMtechnologyDecisionTreesandFraudDetectionAssociationRulesandMarketBasketAnalysisClusteringandCustomerSegmentationTrendsintechnologyKnowledgeDiscoverySupportEnvironmentTools,LanguagesandSystemsResearchchallengesKonstanz,27-28.3.20004EDBT2000tutorial-IntroIntroduction-moduleoutlineMotivationsApplicationAreasKDDDecisionalContextKDDProcessArchitectureofaKDDsystemTheKDDstepsinshortKonstanz,27-28.3.20005EDBT2000tutorial-IntroEvolutionofDatabaseTechnology:
fromdatamanagementtodataanalysis1960s:Datacollection,databasecreation,IMSandnetworkDBMS.1970s:Relationaldatamodel,relationalDBMSimplementation.1980s:RDBMS,advanceddatamodels(extended-relational,OO,deductive,etc.)andapplication-orientedDBMS(spatial,scientific,engineering,etc.).1990s:Datamininganddatawarehousing,multimediadatabases,andWebtechnology.Konstanz,27-28.3.20006EDBT2000tutorial-IntroMotivations
“NecessityistheMotherofInvention”Dataexplosionproblem:
Automateddatacollectiontools,maturedatabasetechnologyandinternetleadtotremendousamountsofdatastoredindatabases,datawarehousesandotherinformationrepositories.
Wearedrowningininformation,butstarvingforknowledge!
(JohnNaisbett)Datawarehousinganddatamining:On-lineanalyticalprocessingExtractionofinterestingknowledge(rules,regularities,patterns,constraints)fromdatainlargedatabases.Konstanz,27-28.3.20007EDBT2000tutorial-IntroAlsoreferredtoas:
Datadredging,Dataharvesting,DataarcheologyAmultidisciplinaryfield:DatabaseStatisticsArtificialintelligenceMachinelearning,ExpertsystemsandKnowledgeAcquisitionVisualizationmethodsArapidlyemergingfieldArapidlyemergingfieldKonstanz,27-28.3.20008EDBT2000tutorial-IntroMotivationsforDM
AbundanceofbusinessandindustrydataCompetitivefocus-KnowledgeManagementInexpensive,powerfulcomputingenginesStrongtheoretical/mathematicalfoundationsmachinelearning&logicstatisticsdatabasemanagementsystemsKonstanz,27-28.3.20009EDBT2000tutorial-IntroWhatisDMusefulfor?MarketingDatabaseMarketingDataWarehousingKDD&DataMining
Increaseknowledgetobasedecisionupon.E.g.,impactonmarketingKonstanz,27-28.3.200010EDBT2000tutorial-IntroTheValueChain
Data
Customerdata
Storedata
DemographicalData
Geographicaldata
Information
XlivesinZSisYyearsoldXandSmovedWhasmoneyinZ
Knowledge
AquantityYofproductAisusedinregionZ
CustomersofclassYusex%ofCduringperiodD
Decision
PromoteproductAinregionZ.
MailadstofamiliesofprofilePCross-sellserviceBtoclientsCKonstanz,27-28.3.200011EDBT2000tutorial-IntroApplicationAreasandOpportunitiesMarketing:
segmentation,customertargeting,...Finance:investmentsupport,portfoliomanagementBanking&Insurance:creditandpolicyapprovalSecurity:
frauddetectionScienceandmedicine:
hypothesisdiscovery,
prediction,classification,diagnosisManufacturing:
processmodeling,qualitycontrol, resourceallocationEngineering:
simulationandanalysis,pattern recognition,signalprocessingInternet:smartsearchengines,webmarketingKonstanz,27-28.3.200012EDBT2000tutorial-IntroClassesofapplicationsMarketanalysistargetmarketing,customerrelationmanagement,marketbasketanalysis,crossselling,marketsegmentation.RiskanalysisForecasting,customerretention,improvedunderwriting,qualitycontrol,competitiveanalysis.FrauddetectionText(newsgroup,email,documents)andWebanalysis.Konstanz,27-28.3.200013EDBT2000tutorial-IntroMarketAnalysisWherearethedatasourcesforanalysis?Creditcardtransactions,loyaltycards,discountcoupons,customercomplaintcalls,plus(public)lifestylestudies.TargetmarketingFindclustersof“model”customerswhosharethesamecharacteristics:interest,incomelevel,spendinghabits,etc.DeterminecustomerpurchasingpatternsovertimeConversionofsingletoajointbankaccount:marriage,etc.Cross-marketanalysisAssociations/co-relationsbetweenproductsalesPredictionbasedontheassociationinformation.Customerprofilingdataminingcantellyouwhattypesofcustomersbuywhatproducts(clusteringorclassification).IdentifyingcustomerrequirementsidentifyingthebestproductsfordifferentcustomersusepredictiontofindwhatfactorswillattractnewcustomersProvidessummaryinformationvariousmultidimensionalsummaryreports;statisticalsummaryinformation(datacentraltendencyandvariation)MarketAnalysisandManagementMarketAnalysis(2)RiskAnalysisFinanceplanningandassetevaluation:cashflowanalysisandpredictioncontingentclaimanalysistoevaluateassetscross-sectionalandtimeseriesanalysis(financial-ratio,trendanalysis,etc.)Resourceplanning:summarizeandcomparetheresourcesandspendingCompetition:monitorcompetitorsandmarketdirections(CI:competitiveintelligence).groupcustomersintoclassesandclass-basedpricingproceduressetpricingstrategyinahighlycompetitivemarketFraudDetectionApplications:widelyusedinhealthcare,retail,creditcardservices,telecommunications(phonecardfraud),etc.Approach:usehistoricaldatatobuildmodelsoffraudulentbehaviorandusedataminingtohelpidentifysimilarinstances.Examples:autoinsurance:detectagroupofpeoplewhostageaccidentstocollectoninsurancemoneylaundering:detectsuspiciousmoneytransactions(USTreasury'sFinancialCrimesEnforcementNetwork)medicalinsurance:detectprofessionalpatientsandringofdoctorsandringofreferencesMoreexamples:Detectinginappropriatemedicaltreatment:AustralianHealthInsuranceCommissionidentifiesthatinmanycasesblanketscreeningtestswererequested(saveAustralian$1m/yr).Detectingtelephonefraud:Telephonecallmodel:destinationofthecall,duration,timeofdayorweek.Analyzepatternsthatdeviatefromanexpectednorm.BritishTelecomidentifieddiscretegroupsofcallerswithfrequentintra-groupcalls,especiallymobilephones,andbrokeamultimilliondollarfraud.Retail:Analystsestimatethat38%ofretailshrinkisduetodishonestemployees.FraudDetection(2)SportsIBMAdvancedScoutanalyzedNBAgamestatistics(shotsblocked,assists,andfouls)togaincompetitiveadvantageforNewYorkKnicksandMiamiHeat.AstronomyJPLandthePalomarObservatorydiscovered22quasarswiththehelpofdataminingInternetWebSurf-AidIBMSurf-AidappliesdataminingalgorithmstoWebaccesslogsformarket-relatedpagestodiscovercustomerpreferenceandbehaviorpages,analyzingeffectivenessofWebmarketing,improvingWebsiteorganization,etc.WatchforthePRIVACYpitfall!OtherapplicationsTheselectionandprocessingofdatafor:theidentificationofnovel,accurate,andusefulpatterns,andthemodelingofreal-worldphenomena.Datamining
isamajorcomponentoftheKDDprocess-automateddiscoveryofpatternsandthedevelopmentofpredictiveandexplanatorymodels.WhatisKDD?Aprocess!Konstanz,27-28.3.200020EDBT2000tutorial-IntroSelectionand
PreprocessingDataMiningInterpretationandEvaluationData
ConsolidationKnowledgep(x)=0.02WarehouseDataSourcesPatterns&
ModelsPreparedDataConsolidatedDataTheKDDprocessKonstanz,27-28.3.200021EDBT2000tutorial-IntroTheKDDProcessCoreProblems&ApproachesProblems:identificationofrelevantdatarepresentationofdatasearchforvalidpatternormodelApproaches:top-downdeductionbyexpertinteractivevisualizationofdata/models*bottom-upinduction
fromdata*DataMiningOLAPKonstanz,27-28.3.200022EDBT2000tutorial-IntroLearningtheapplicationdomain:relevantpriorknowledgeandgoalsofapplicationDataconsolidation:CreatingatargetdatasetSelectionandPreprocessing
Datacleaning:(maytake60%ofeffort!)Datareductionandprojection:findusefulfeatures,dimensionality/variablereduction,invariantrepresentation.Choosingfunctionsofdataminingsummarization,classification,regression,association,clustering.Choosingtheminingalgorithm(s)Datamining:searchforpatternsofinterestInterpretationandevaluation:analysisofresults.visualization,transformation,removingredundantpatterns,…UseofdiscoveredknowledgeThestepsoftheKDDprocessIdentifyProblemor
OpportunityMeasureeffectofActionActonKnowledgeKnowledgeResultsStrategyProblemThevirtuouscycleKonstanz,27-28.3.200024EDBT2000tutorial-IntroApplications,operations,techniquesKonstanz,27-28.3.200025EDBT2000tutorial-IntroRolesintheKDDprocessKonstanz,27-28.3.200026EDBT2000tutorial-IntroIncreasingpotentialtosupportbusinessdecisionsEndUserBusinessAnalystDataAnalystDBA
MakingDecisionsDataPresentationVisualizationTechniquesDataMiningInformationDiscoveryDataExplorationOLAP,MDAStatisticalAnalysis,QueryingandReportingDataWarehouses/DataMartsDataSourcesPaper,Files,InformationProviders,DatabaseSystems,OLTPDataminingandbusinessintelligenceKonstanz,27-28.3.200027EDBT2000tutorial-IntroGraphicalUserInterfaceDataConsolidationSelectionandPreprocessingDataMiningInterpretationandEvaluationWarehouseKnowledgeDataSourcesArchitectureofaKDDsystemKonstanz,27-28.3.200028EDBT2000tutorial-IntroAbusinessintelligenceenvironmentKonstanz,27-28.3.200029EDBT2000tutorial-IntroSelectionand
PreprocessingDataMiningInterpretationandEvaluationData
ConsolidationKnowledgep(x)=0.02WarehouseDataSourcesPatterns&
ModelsPreparedDataConsolidatedDataTheKDDprocessKonstanz,27-28.3.200030EDBT2000tutorial-IntroGarbageinGarbageout
Thequalityofresultsrelatesdirectlytoqualityofthedata50%-70%ofKDDprocesseffortisspentondataconsolidationandpreparationMajorjustificationforacorporatedatawarehouseDataconsolidationandpreparationKonstanz,27-28.3.200031EDBT2000tutorial-IntroFromdatasourcestoconsolidateddatarepositoryRDBMSLegacyDBMSFlatFilesDataConsolidationandCleansingWarehouseObject/RelationDBMS
MultidimensionalDBMS
DeductiveDatabase
FlatfilesExternalDataconsolidationKonstanz,27-28.3.200032EDBT2000tutorial-IntroDeterminepreliminarylistofattributesConsolidatedataintoworkingdatabaseInternalandExternalsourcesEliminateorestimatemissingvaluesRemoveoutliers(obviousexceptions)DeterminepriorprobabilitiesofcategoriesanddealwithvolumebiasDataconsolidationKonstanz,27-28.3.200033EDBT2000tutorial-IntroSelectionand
PreprocessingDataMiningInterpretationandEvaluationDataConsolidationKnowledgep(x)=0.02WarehouseTheKDDprocessKonstanz,27-28.3.200034EDBT2000tutorial-IntroGenerateasetofexampleschoosesamplingmethodconsidersamplecomplexitydealwithvolumebiasissuesReduceattributedimensionalityremoveredundantand/orcorrelatingattributescombineattributes(sum,multiply,difference)ReduceattributevaluerangesgroupsymbolicdiscretevaluesquantizecontinuousnumericvaluesTransformdatade-correlateandnormalizevaluesmaptime-seriesdatatostaticrepresentationOLAPandvisualizationtoolsplaykeyroleDataselectionandpreprocessingKonstanz,27-28.3.200035EDBT2000tutorial-IntroSelectionand
PreprocessingDataMining
InterpretationandEvaluationDataConsolidationKnowledgep(x)=0.02WarehouseTheKDDprocessKonstanz,27-28.3.200036EDBT2000tutorial-IntroDatamining
tasksandmethodsAutomatedExploration/Discoverye.g..
discoveringnewmarketsegmentsclustering
analysisPrediction/Classificatione.g..
forecastinggrosssalesgivencurrentfactorsregression,neuralnetworks,geneticalgorithms,
decisiontreesExplanation/Descriptione.g..
characterizingcustomersbydemographics
andpurchasehistorydecisiontrees,association
rulesx1x2f(x)xifage>35andincome<$35k
then...Konstanz,27-28.3.200037EDBT2000tutorial-IntroClustering:partitioningasetofdataintoasetofclasses,calledclusters,whosememberssharesomeinterestingcommonproperties.Distance-basednumericalclusteringmetricgroupingofexamples(K-NN)graphicalvisualizationcanbeusedBayesianclusteringsearchforthenumberofclasseswhichresultinbestfitofaprobabilitydistributiontothedataAutoClass(NASA)oneofbestexamplesAutomatedexplorationanddiscoveryKonstanz,27-28.3.200038EDBT2000tutorial-IntroLearningapredictivemodelClassificationofanewcase/sampleManymethods:ArtificialneuralnetworksInductivedecisiontreeandrulesystemsGeneticalgorithmsNearestneighborclusteringalgorithmsStatistical(parametric,andnon-parametric)PredictionandclassificationKonstanz,27-28.3.200039EDBT2000tutorial-IntroTheobjectiveoflearningistoachievegoodgeneralizationtonewunseencases.GeneralizationcanbedefinedasamathematicalinterpolationorregressionoverasetoftrainingpointsModelscanbevalidatedwithapreviouslyunseentestsetorusingcross-validationmethodsf(x)xGeneralizationandregressionKonstanz,27-28.3.200040EDBT2000tutorial-IntroClassificationandpredictionClassifydatabasedonthevaluesofatargetattribute,e.g.,classifycountriesbasedonclimate,orclassifycarsbasedongasmileage.Useobtainedmodeltopredictsomeunknownormissingattributevaluesbasedonotherinformation.Konstanz,27-28.3.200041EDBT2000tutorial-IntroObjective:
Developageneralmodelor hypothesisfromspecificexamplesFunctionapproximation(curvefitting)Classification(conceptlearning,patternrecognition)x1x2ABf(x)xSummarizing:inductivemodeling=learningKonstanz,27-28.3.200042EDBT2000tutorial-IntroLearnageneralizedhypothesis(model)fromselecteddataDescription/InterpretationofmodelprovidesnewknowledgeMethods:InductivedecisiontreeandrulesystemsAssociationrulesystemsLinkAnalysis…ExplanationanddescriptionKonstanz,27-28.3.200043EDBT2000tutorial-IntroGenerateamodelofnormalactivityDeviationfrommodelcausesalertMethods:ArtificialneuralnetworksInductivedecisiontreeandrulesystemsStatisticalmethodsVisualizationtoolsException/deviationdetectionKonstanz,27-28.3.200044EDBT2000tutorial-IntroOutlierandexceptiondataanalysisTime-seriesanalysis(trendanddeviation):Trendanddeviationanalysis:regression,sequentialpattern,similarsequences,trendanddeviation,e.g.,stockanalysis.Similarity-basedpattern-directedanalysisFullvs.partialperiodicityanalysisOtherpattern-directedorstatisticalanalysisKonstanz,27-28.3.200045EDBT2000tutorial-IntroSelectionand
PreprocessingDataMiningInterpretationandEvaluationDataConsolidationandWarehousingKnowledgep(x)=0.02WarehouseTheKDDprocessKonstanz,27-28.3.200046EDBT2000tutorial-IntroAdataminingsystem/querymaygeneratethousandsofpatterns,notallofthemareinteresting.Interestingnessmeasures:easilyunderstoodbyhumansvalidonnewortestdatawithsomedegreeofcertainty.potentiallyusefulnovel,orvalidatessomehypothesisthatauserseekstoconfirmObjectivevs.subjectiveinterestingnessmeasuresObjective:basedonstatisticsandstructuresofpatterns,e.g.,support,confidence,etc.Subjective:basedonuser’sbeliefsinthedata,e.g.,unexpectedness,novelty,etc.Areallthediscoveredpatterninteresting?Findalltheinterestingpatterns:Completeness.Canadataminingsystemfindalltheinterestingpatterns?Searchforonlyinterestingpatterns:Optimization.Canadataminingsystemfindonlytheinterestingpatterns?ApproachesFirstgenerateallthepatternsandthenfilterouttheuninterestingones.Generateonlytheinterestingpatterns-miningqueryoptimization.Completenessvs.optimizationEvaluationStatisticalvalidationandsignificancetestingQualitativereviewbyexpertsinthefieldPilotsurveystoevaluatemodelaccuracyInterpretationInductivetreeandrulemodelscanbereaddirectlyClusteringresultscanbegraphedandtabledCodecanbeautomaticallygeneratedbysomesystems(IDTs,Regressionmodels)InterpretationandevaluationKonstanz,27-28.3.200049EDBT2000tutorial-IntroVisualizationtoolscanbeveryhelpfulsensitivityanalysis(I/Orelationship)histogramsofvaluedistributiontime-seriesplotsandanimationrequirestrainingandpracticeResponseVelocityTempInterpretationandevaluationKonstanz,27-28.3.200050EDBT2000tutorial-Intro1989IJCAIWorkshoponKDDKnowledgeDiscoveryinDatabases(G.Piatetsky-ShapiroandW.Frawley,eds.,1991)1991-1994WorkshopsonKDDAdvancesinKnowledgeDiscoveryandDataMining(U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusamy,eds.,1996)1995-1998AAAIInt.Conf.onKDDandDM(KDD’95-98)JournalofDataMiningandKnowledgeDiscovery(1997)1998ACMSIGKDD1999SIGKDD’99Co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产力和生产关系新质生产力
- 新护士岗前培训心得体会模版
- 科室护理工作汇报材料
- 银行营销面试题目及答案
- 银行内聘面试题目及答案
- 医院消防试题知识及答案
- 一级消防工程师模拟试题及答案
- 湿疹的护理常规
- 跨国度假紧急医疗援助服务补充协议
- 全球化市场拓展人员招聘与派遣合同
- 幼儿园红色故事:一封鸡毛信
- 2023年度内蒙古自治区政府采购评审专家资格典型题汇编及答案
- 中职学校招生接待流程
- 机动车检测站2023年评审准则版质量手册程序文件质量记录合集
- 公安技术与警务指挥作业指导书
- 老年危重症患者的护理
- 《隧道测量》课件
- 《痤疮与抗痤疮药》课件
- 《平凡的世界》中孙少平人物形象分析8500字(论文)
- 《结构式家庭疗法提升“丧偶式育儿”家庭亲密度的个案研究》
- 化学实验室废物处理管理制度
评论
0/150
提交评论