




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第python机器学习算法与数据降维分析详解目录一、数据降维1.特征选择2.主成分分析(PCA)3.降维方法使用流程二、机器学习开发流程1.机器学习算法分类2.机器学习开发流程三、转换器与估计器1.转换器2.估计器
一、数据降维
机器学习中的维度就是特征的数量,降维即减少特征数量。降维方式有:特征选择、主成分分析。
1.特征选择
当出现以下情况时,可选择该方式降维:
①冗余:部分特征的相关度高,容易消耗计算性能
②噪声:部分特征对预测结果有影响
特征选择主要方法:过滤式(VarianceThreshold)、嵌入式(正则化、决策树)
过滤式:
sklearn特征选择API
sklearn.feature_selection.VarianceThreshold
注意:没有最好的方差选择,需要根据实际效果选择方差。
2.主成分分析(PCA)
API:sklearn.decomposition
主成分分析会尽可能降低原数据的维数,损失少量信息。当特征数量达到上百的时候,就需要考虑主成分分析。可以削减回归分析或者聚类分析中特征的数量。
PCA语法:
里面的n_components通常填0-1的小数,代表保留百分之多少的数据,比如0.95意思是保留95%的数据。通常在0.9-0.95之间
3.降维方法使用流程
例如:研究用户和购买物品类别的关系,数据有不同的表格存储,均为csv文件,但所需的两者“用户”和“购买物品类别”,存在于不同的表中。则可以按照以下流程进行:
1.观察各个表格的键,通过相同的键对表格进行合并,使用pandas.merge(表1,表2,键1,键2)方法,其中键1和键2相同。经过多次合并,最终将两个目标合并到一张表中。
2.通过交叉表pd.crosstab(合并后的表['用户'],合并后的表['物品类别']),建立一个以用户为行,以物品类别为列的数据表。
3.对表格进行数据的降维,可以使用PCA(n_components=0.9),保留90%的有效信息,输出降维后的数据。即可有效减少维度,并确保留存90%的有效信息。
二、机器学习开发流程
1.机器学习算法分类
数据类型:
离散型:区间内不可分,通常是在分类型问题中。
连续型:区间内可分,通常是在预测型问题中。
算法分类:
算法总体分为两类,监督学习和无监督学习。
①监督学习包含特征值+目标值,算法又分为两小类,分类算法和回归算法。
分类算法:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
回归算法:线性回归、岭回归
②无监督学习只有特征值,通常是聚类算法:k-means
2.机器学习开发流程
机器学习开发首先需要有数据,数据来源可能有以下几种:公司本身有数据、合作过来的数据、购买的数据。
具体开发流程如下:
①明确实际问题做什么:根据目标值数据类型,建立模型,划分应用种类。看看是分类问题还是预测问题。
②数据的基本处理:使用pandas处理数据,缺失值,合并表等等。
③特征工程:对数据特征进行处理(重要)。
④找到合适的算法去进行预测。
⑤模型的评估,判定效果→上线使用,以API形式提供;若模型评估没有合格:换算法、参数,特征工程
sklearn数据集的使用:
通常在使用前会对数据集进行划分,从数据中拿出约75%作为训练集、25%作为测试集。也可以0.8/0.2等。通常0.75/0.25是使用最多的。
sklearn数据集划分API:sklearn.model_selection.train_set_split
sklearn数据集API:
获取数据集返回的类型:
数据集进行分割:
用于分类的大数据集:
sklearn回归数据集:
三、转换器与估计器
1.转换器
在数据处理中用到的fit_tansform方法中,其实可以拆分为fit方法和transform方法。
fit_transform()=fit()+transform()
若直接使用fit_transform(),则是对输入的数据进行求平均值、标准差,并使用它们进行数据处理最终输出结果。
如果拆开的话:
fit():输入数据,计算平均值,标准差等,不进行后续工作。
transform():使用fit计算好的内容进行转换。
也就是说可以通过fit()方法,生成1个数据对应的标准,使用这个标准,对其他数据,通过transform方法进行转换。
2.估计器
估计器就是已经实现了的算法的API,可以直接调用,输入相关数据,对结果进行预测等。
估计器工作流程:
1.调用fit(x_train,y_train),输入训练集
2.输入测试集的数据(x_test,y_test),调用不同接口可得不同结果
API①:y_predict=predict(x_test),该接口可获得算法对y的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学徒合同协议书下载
- 校园店合同协议书
- 分手合同协议书
- 机床维修合同协议书范本
- 纺织工程师考试相关资源与试题及答案
- 蜘蛛人合同协议书
- 土地合同转让协议书
- 免责合同协议书
- 就业协议书合同
- 高新区合同协议书范本
- 16建筑施工安全检查要点图解-施工机具
- CJ∕T 51-2018 城镇污水水质标准检验方法
- 职业技术学院《酒店管理概论》课程标准
- 烟花爆竹零售经营场所安全管理新规制度
- 《休闲鞋大底用聚氨酯原液编制说明》
- 青绿色中国农业科学院考研复试模板
- 2024年杭州钱塘新区产业发展集团有限公司招聘笔试冲刺题(带答案解析)
- 数字经济下平台化人力资源管理对员工创新绩效的影响研究-数字能力的调节效应
- 《大学生美育》 课件 第七章 艺术美
- 2023年湖南省湘西州中考物理真题试卷(含答案)
- 三亚旅游宣传含内容
评论
0/150
提交评论