




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Thefront-runners’guidetoscalingAI
Lessonsfromindustryleaders
>
accenture
>
Authors
SenthilRamani
GlobalLeadforData&AI,
Accenture
LanGuan
ChiefAIOfficer,Accenture
Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
PhilippeRoussiere
GlobalLeadfor
InnovationandAI,
AccentureResearch
2
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders3
Abouttheresearch
Wesurveyed2,000C-suiteanddata-science
executives,wholead1,998oftheworld’slargest
companies(revenuesgreaterthan$1billion,whichare
headquarteredin15countries(Australia,Brazil,Canada,China,Germany,France,India,Italy,Japan,SaudiArabia,Singapore,Spain,UnitedArabEmirates,UnitedKingdomandUnitedStates)andoperateinnineindustries
(banking,insurance,energy,consumergoodsand
services,lifesciences,utilities,retail,publicservicesandcommunicationsandmedia).Thesurvey,fieldedfrom
JunetoJuly2024,aimedtoshedlightonhowcompaniesdevelopanddeployAImodelstocreatefinancialand
non-financialvalue.Thesurveycoveredtopicssuch
asorganizations’dataandAIstrategy,dataandAI
architecture,budgetsfor—andinvestmentsin—strategicbets,talentstrategy,ecosystemstrategy,responsibleAI,AI-relatedchallengesandAIadoptionrates.
Toidentifythemostimportantstrategicbets(see“Get
strategic,”above),wealsointerviewednumerousC-suiteexpertswithinandoutsideAccenture.Inaddition,we
deployedmachinelearningtoidentifyboththekey
capabilitiesassociatedwithscalingstrategicbetsand
companies’progressindevelopingthosecapabilities.
TheresearchwasfurtherenrichedwithinsightsfromourextensiveexperiencehelpingclientsscaleAIsolutions.Bydrawingonthesediverseinputs,ourfindingsthus
capturebothstrategicperspectivesonAIandreal-worldexecutionchallenges.
Forthepurposesofthisreport,“scalingAI”refersto
theprocessofexpandingAIimplementationacrossan
enterprisetoachievebroader,moreimpactfuloutcomes.ScalingincludesintegratingAIintodiversebusiness
processesandworkflows;ensuringwidespreadadoptionacrossassetsandemployees;seamlesslyintegrating
AIwithexistingsystems;drivinginnovationtogaina
competitiveedgeinthemarket;andotherwiseimprovingkeyperformancemetrics.“GenerativeAI”describes
anumbrellatermforartificialintelligencethatcan
producebrand-newoutput—suchastext,images,videos,audioandcode.
Executivesummary
ThougheverybusinessmaywantanAI-powerededge,manycompaniesarestillstrugglingtoadvancebeyondtheirinitial
AIexperiments.Abigreasonforthis,ourresearchalsoshows,islowdata“readiness”—whichariseswhenalltypesofdata,
especiallyunstructureddata,arenotusedtothemax.
Encouragingly,mostbusinessleadersrecognizethischallenge.Forexample,70%ofthecompanieswesurveyedacknowledgedtheneedforastrongdatafoundationwhentryingtoscaleAI.
Data,ofcourse,isn’ttheonlyobstacletoenterprisereinvention
withgenAI.OutdatedITsystems,aswellasworkers’lackofaccessto,respectively,genAItools,comprehensivetrainingandclear
guidancefromleadershiparesignificantbarriers,too.
Atthesametime,ourresearchrevealedthatasmallminorityofcompanies(“front-runners”)arealreadyachievingconsiderablesuccessatreinventingtheirenterpriseswithgenAI.These
companiesconsistentlygetoneveryimportantthingright:They combinewhatwecall“tablestakes”investmentsingenAIwith“strategicbets”(seesidebar,“Getstrategic”).
Front-runners,forexample,useagenticAIintheirtablestakesto
boostefficiency.Andintheirstrategicbets,theydeployagenticAItoradicallyreinventtheirorganizationalprocessesandworkflows.
70%ofthecompanies
wesurveyed
acknowledgedthe
needforastrongdata
foundationwhen
tryingtoscaleAI.
Forbusinesses,securingasustainedadvantageovercompetitorswaslongtheHolyGrail—acoveted,yetelusiveprize.Today,
however,generativeartificialintelligenceandotherformsofAI
haveflippedthescript,bringingthepreviouslyunattainablewithinreach.That’swhytheworld’slargestcompaniesareinvesting
heavilyindataandAI.
ButreinventingtheenterprisewithgenerativeAI(genAI)isn’t
simplyamatterofdeployingafewchatbots.ReinventionisaboutbuildingadvancedAIcapabilitieslike“agenticarchitecture,”
networksofAIagentsthatgobeyondautomatingroutinetaskstoorchestratingentirebusinessworkflows.
Endowedwithsophisticatedreasoning,AIagentscollaborate
autonomouslytoimprovequality,productivityandcost-efficiencyatscale.Agenticarchitectureisspreadingfast:one-thirdofthe
companieswesurveyedforthisreport(See‘’Abouttheresearch’’onpage38)arealreadyusingAIagentstostrengthentheir
innovationcapabilities.
ReinventionthusrequiresintegratingAIdeeplyintothecoreofacompany’sstrategy.Todothis,businesses,undertheproactiveleadershipoftheirCEOandboard,mustgobeyondsurface-levelapplicationsofAIandprioritizestructuralandstrategicchangesthatunlockAI’sfullpotential.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders4
Getstrategic
“Strategicbets”aresignificant,long-term
investmentsingenAIthatfocusonthe
coreofacompany’svaluechain(suchas
underwritingandclaimsforaninsurer,
assetmanagementforautilityand,R&D
foralifesciencesfirm)andthatalsooffer
averylargepayoff.Strategicbetsaimto
maximizethepotentialofgenAItodrive
transformative,industry-specific,process-
levelefficiencies,aswellasexceptional
productivity,innovationandrevenuegrowth.
“Tablestakes”aretheopposite:foundational
investmentsthatdrivebroadAIadoptionwithinanorganizationandvalidatethetechnology’s
abilitytohandlespecificusescases(suchas
customer-supportcentersthatseamlesslymovebetweentextandvoiceinteractions).While
tablestakesofferonlyincrementalvalue,theyarestillessentialproofpointsofAImaturity.
Soevenastheyfocusonafewstrategicbetstodriveenterprisereinvention,companies
shouldcontinuewithtablestakesaswell.
Touncoverthemostimportantstrategicbets
ineachofthenineindustrieswestudied,we
solicitedtheviewsofAccentureexpertswhohaveadvisedclientson2,000recentgenAIprojects.
WealsointerviewedexternalAIexpertsatvariouslargecompaniesaroundtheworld.Through
theseconsultations,wearrivedat105strategicbets—orjustover11perindustry,onaverage.
(Someindustrieshadmorestrategicbetsthanothers;see“Appendix1:The105strategicbets”and“Appendix2:Researchmethodology.”).
Later,oursurveyof2,000executives*frommanyoftheworld’slargestcompaniesrevealedthe
extenttowhichtheseorganizationshaveadoptedgenAIbyscalingtheirrespective,industry-
focused,strategicbets.Companiesintheutilitiesindustry,say,wereaskedabouttheirexperiencewith10utilities-focusedstrategicbets.One
question,forexample,assessedcompanies’levelofgenAIadoptionaroundtheirstrategicbeton“augmentedassetmanagement”.Companies
couldthenansweralongaspectrum,from“noadoption”to“fullscaling”acrosstheenterprise.
Wefoundthat34%ofsurveyed
companieshavescaledatleastone
strategicbet.SuchcompaniesalsospendsignificantlymoreoncloudandAI
(devoting51%oftheirtechnologybudgetstotheseareas)thandocompaniesthat
havenotscaledanystrategicbets(45%oftheirrespectivetechbudgets).
5
>Thefront-runners’guidetoscalingAI:LessonsfromindustryleadersThesurveycovered2,000executives,from1,998companies.
Thestatedmarginoferroris+/-2.2percentagepointsatthe95%confidenceintervalmidpoint.
Companiesthatscalestrategicbetsareusually
delightedwiththeirfinancialperformanceaswell.Forinstance,comparedtocompetitorsthathave
notdoneso,companiesthathavescaledatleastonestrategicbetarenearlythreetimesmorelikelyto
havetheirreturnoninvestment(ROI)fromgenAIsurpasstheirforecasts.
Butregardlessofwhethertheyhavealot,oralittle,worktodobeforetheyscalemorestrategicbets,allthecompanieswesurveyedexpectbigthingsfromreinventionwithgenAI.Onaverage,theseorganizationsexpecta13%
increaseinproductivity,a12%increaseinrevenuegrowth,an11%improvementincustomerexperience,andan11%decreaseincostswithin18monthsof
deployingandscalinggenAIacrosstheirenterprise.
Drawingonourempiricalresearchandextensiveclientwork,thisreport
exploresthedistinguishingtraitsofAIreinvention-readycompanies,which
remainpoorlyunderstood.Inthefollowingpages,weidentifytheessential
dataandAIcapabilitiesthatfront-runnerspossess—anddescribesfive
imperativesthatallowfront-runnerstoscaletheirstrategicbetseffectively(foradditionalanalysisofthefiveimperatives,seetheAccenturereports,“
Making
ReinventionRealwithGenAI
”and“
ReinventionintheageofgenerativeAI
”):
1.Leadwithvalue
2.Reinventtalentandwaysofworking
3.BuildanAI-enabled,securedigitalcore
4.ClosethegaponresponsibleAI
5.Drivecontinuousreinvention
Asthisreportmakesclear,artificialintelligencehasalreadymovedpastits
familiarroleasapowerfultoolforboostingefficiency.Whenusedtoitsfull
potential,AIisnowsomethingfargreater:anunstoppableforceforenterprisereinvention,allowingcompaniestogrowfasterandinnovatebetterthanrivals.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders6
Whatmakesacompanyreinvention-readyforAI?
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders7
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders8
In2022,weidentifiedasmallgroupofcompaniesthat
wereleadersinfoundationaldataandAIcapabilities
(seeAppendix2).1Today,these“AIreinvention-ready”
companiesstillexcelatthebasics.Butthey’realsohoningtheirgenAIcapabilitiestogreateffect.
AIreinvention-readycompanies,ourresearchalsoshows,representonlyafractionoftheworld’slargestbusinesses(just15%oftheorganizationswestudied).Inourschema,thesecond-mostadvancedgrouparecompaniesthat
areprogressingwithAI(43%ofcompanies),followedbycompaniesthataremerelyexperimentingwithAI(42%).
Here’showwearrivedatthesethreegroups.Wecreatedanindextomeasureandcategorizecompaniesbasedontheirmaturityindevelopinganddeployingthecapabilitiesthat
aremostcriticaltoscalingstrategicbetsingenAI.
Wediscoveredthatthemostadvancedgroup,AI
reinvention-readycompanies,haveachievedhighlevels
ofmaturity(seetheirlarge“webs”inFigure1),inboththefoundationalcapabilitiesandinwhatwecallthe“new
dataandAIessentialcapabilities”forgenAI.Thelatterarecomprisedoflargelanguagemodeloperations(LLMOps)maturity,datamanagementandgovernance(DM&G)–
newessentials,datasource,foundationmodelspractice,andtalentpractice.(SeeAppendix2forthefulllistof
foundationalandnewcapabilities.)
Figure1:Webofprogress
Reinvention-readycompanieshavemorematuredataandAIcapabilities
capabilities
experimentingwithAI
F1
progressingwithAI
F1
AIreinvention-ready
F1
F1:Data&AIstrategy
F2:AI
platformmaturity
75%
50%
25%
F3:DM&Gmaturity
&AIessentialcapabilities
N1
N1
:LLMOpsMaturity
N2:DM&G
new
essentials
N1
75%
50%
25%
N5
N4N3
N5
N4N3
N3:Datasource
Foundational
F5
F3
F4
F2
F5
F3
F4
F2
F5
F3
F4
F2
F5:RAImaturity
F4:Talent
maturity
NewData
N1
N5
N4N3
N2
N5:Talentpractice
N2
N2
N4:Foundationmodelspractice
Source:AccentureResearch.Thelargertheareaoftheweb,themorematurethecapabilities.
Figure2:AppreciatetheEight
Only8%oforganizationsareAIreinvention-readyfront-runners
Meanwhile,companiesthatareprogressingwithAIdemonstrate
8%
7%
43%
42%
intermediatelevelsofmaturityinthosecapabilities(medium-sizedwebsinFigure1).Andcompaniesthatareexperimentinghavecomparativelylow
front-runners
fast-followers
levelsofmaturity(smallwebs).
AI
reinvention-ready
AIreinvention-readycompanieshave,inshort,developedstrongdigitalcores,whichareessentialforscalingAIanddata-driveninitiatives,
ensuringdataaccessibility,computingperformanceandsecurity.2
Withoutastrongdigitalcore,businessesaremorelikelytounderperformandstruggletoadapttorapidlychangingenvironments.
That’sthemacroview.Themicroview,however,showsthatnotall
progressingwithAI
reinvention-readycompaniesareequallyproficientatscalingstrategicbetsingenAI.Infact,wefoundthatsomeofthesecompanies(“front-runners”)havealreadyscaledmultiplestrategicbets,whileothers(“fastfollowers”)haveyettoscaleanystrategicbets(Figure2).
experimentingwithAI
Source:AccentureResearch.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders9
Breakingaway—how
front-runnersarescalingAI
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders10
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders11
Whatdistinguishesfront-runnersfromfast-followersistheirrelativeaptitudeatdeployingandscalingstrategicbets.
Indeed,front-runnersnotonlyplacemorestrategicbetsbutalsoscalethematasignificantlyhigherratethanothercompaniesdo.AsFigure3illustrates,front-runnershave,onaverage,alreadyscaled34%of
thestrategicbets(orthreetofourbets)thataremostrelevanttotheirindustry;another40%offront-runners’strategicbetsareintheearlystagesofscaling.
Fast-followers,ontheotherhand,havenotyetfullyscaledany
strategicbets,withonly33%intheearlystagesofscaling.The
numbersforcompaniesthatareprogressingwithAI(8%ofstrategic
betsscaled,32%intheearlystages)andforcompaniesthatareonlyexperimentingwithAI(5%and28%,respectively)similarlyunderscorethegaptheyneedtoclose.
Figure3:Scaleforsuccess
front-runnershavescaled34%oftheirstrategicbets,onaverage
front-runners
fast-followers
progressingwithAI
experimentingwithAI
60%
30%
0%
60%
30%
0%
60%
30%
0%
60%
30%
0%
40%
23%
3%
34%
51%
16%
0%
33%
44%
8%
16%
32%
45%
22%
28%
5%
not
plannedearlyscaled
stages
planned
Source:AccentureResearch.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders12
Sowhydofront-runnersexcelatscalingstrategic
bets?Afterall,morefast-followers(89%)thanfront-runners(81%)havealreadydevelopedthefiveAI
foundationalcapabilitiesreferencedinFigure1.
Tounderstandwhy,lookfirsttothenewdataandAI
essentialcapabilitiesforgenAI.Here,front-runners
haveaclearedge:Wefoundthat28%offront-runnershavedevelopedallfiveofthesecapabilities,comparedtoonly19%offast-followers.
Theedgeisalsoevidentwhenfront-runnersare
comparedtoothercompanies.AsFigure4shows,97%offront-runnershavedevelopedthreeormoreofthenewdataandAIessentialcapabilitiesfor
genAI,comparedtojust5%ofcompaniesthatareexperimentingwithAI(Figure4).
Figure4:ThenewdataandAIessentialcapabilitiesforgenAI
Nearlyallfront-runnershaveadoptedthreeormoreofthese
front-runners
fast-followers
progressingwithAI
experimentingwithAI
97%offront-runnershaveachievedatleast3outof5advancedmaturitylevelofNewData&AIEssential
capabilities
Only5%ofexperimentingwithAImanagetoachieve3outof5advancedmaturitylevel
ofNewData&AIEssentialcapabilities
#ofNewDataandAI
1outof5
2outof5
3outof5
4outof5
5outof5
0outof5
EssentialCapabilities
achievingadvancedlevel
Source:AccentureResearch.
Considerotherdistinguishingtraitsoffront-runners.ThesecompaniesaremorelikelytohavestrongCEOandboard
sponsorshipfortheirAIinvestmentsthanfast-followers
(19%vs.5%,respectively,ofsurveyedcompanies).Front-runnersarealsomorelikelythanfast-followers(59%vs.
36%)tohavefullyintegratedtheircoreAIstrategy,criticalprocesses,andtechnologycapabilitiesintoacohesive
framework.Morebroadly,front-runnersarethreetimes
morelikelythanothercompaniestohaveachievedahighlevelofmaturitywiththeirAIplatforms.
Front-runnersprioritizepeople-centeredchange,too:
They’refourtimesmorelikelythanfast-followerstofocusonculturalissuesthatimpedechange;threetimesmorelikelytoemphasizetalentalignmentandtransparent
communication;threetimesmorelikelytouseinsightsfrombehavioralsciencetocontinuouslymonitorthe
impactofAI-drivenchange;andtwotimesmorelikelytoofferstructuredtrainingprogramsforemployees.
Tobesure,front-runnersdon’thaveanedgeateverythingAI-related.Fast-followers,forexample,areparticularly
strongattalentdevelopment;96%offast-followersfocusoncultivatingspecializedAItalent(suchasAIengineers),comparedto88%offront-runners.
Fastfollowersareneverthelessheldbackinthisarea,
ourresearchalsorevealed,becausetheymostlylack
acentralizedoperatingmodel—suchasa“centerof
excellence”thatservesasthefocalpointforacompany’sAIstrategy,developmentanddeployment.Forexample,only16%offast-followershaveacentralizedoperating
model,while57%offront-runnersdo.
Anotherimportantdifferentiatorforfront-runnersisthat
they’remorelikelytobeskilledatusingandcontinuouslyimprovingautonomousAIagentsthataretailoredto
industryneeds.Forinstance,65%offront-runnersare
skilledinthisarea,comparedto50%offast-followers.
Front-runners,likewise,aremoreadeptthanfast-followersatdefiningthebusinessvaluefromtheirAIusecases.
Whenitcomestodata,fast-followersdopossesscertainadvantages.Forexample,96%areverystrongindata
governance,comparedto83%offront-runners.Dittofordataplatforms(98%vs.90%,respectively).
Butinmanyotherdata-relatedpractices,fast-followers
lagfarbehind.Forexample,17%offront-runnersuse
“retrieval-augmentedgeneration”toenhancetheirLLMs,whileonly1%offast-followersdo.Similarly,front-runners
aremuchmorelikelythanfast-followerstodothingslikeuse“knowledgegraphs”tostructureandcontextualizedata(26%v.3%)andmanagedataeffectivelyoverthe
entiredatalifecycle(22%vs.6%).
Whenitcomestoleveragingdiversedatasources,front-
runnersholdaclearedgeaswell.Forinstance,they’re
morelikelythanfast-followerstoheavilyusezero-party
data(44%vs.4%),second-partydata(30%vs.7%),third-partydata(25%vs.8%)andsyntheticdata(35%vs.6%).Fast-followers,incontrast,areonlyslightlymorelikely
thanfront-runnerstoheavilyusefirst-partydata(60%vs.67%)andtacitknowledge(72%vs.68%).3
Beforegoingallinonstrategicbets,Telstra,Australia’s
leadingtelecommunicationscompany,wiselysetabout
simplifyingandmodernizingitsdataecosystem.This
involvesconsolidatingover40platformsintoasmall,
integrated,datafoundation.Oncetherearchitectingis
completed,TelstrawillbefarbetterplacedtorapidlyscaleitsgenAIcapabilities.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders13
TheAIrace—whichindustriesaretakingthelead
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders14
Ourresearchalsorevealedtheindustriesthathave
madethemostprogressscalingstrategicbets.Figure
5illustrateshowfront-runnersaremostprevalent
inthelifesciences(accountingfor12%ofsurveyed
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
companiesinthatindustry)andleastcommoninretail(2%,respectively).
Figure5:TheAIlife
front-runnersaremostprevalentinthelife-sciencesindustry
fast-followers
progressingwithAI
experimentingwithAI
12%
6%
4%
4%
6%
12%
9%
2%
10%
39%
29%
45%
39%
42%
32%
47%
63%
49%
37%
55%
43%
49%
45%
48%
39%
30%
39%
LifeSciences
Insurance
Utilities
C&M
Banking
Energy
CG&S
PublicServices
Retail
8%
7%
42%
44%
Average
15
Industriesorderedbytheshareoffront-runnerswithineachindustry.C&M=communicationsandmedia;CG&S=consumergoodsandservices.Source:AccentureResearch.
front-runners
12%
10%
9%
9%
8%
7%
5%
5%
2%
Figure6showsthethreemost-scaledstrategic
betsbyindustry.Inlifesciences,forexample,16%
ofcompanieshavescaledtheirstrategicbeton
acceleratingtimetoapproval;14%havescaledtheirstrategicbetonacceleratingtimetoclinic;and13%havescaledtheirstrategicbetonmaximizingthe
valuepropositionofmedicines.
>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders
Figure6:Threecheers
Thethreemostscaledstrategicbetsbyindustry
Industry#1#2#3
LifeSciences
Acceleratetimetoapproval
16%
Acceleratetimetoclinic
14%
Maximizehealthandeconomicoutcomes
13%
Insurance
Fraud
detection
23%
Call
assistance
13%
Claimsintake
12%
Utilities
Workforceoperationsoptimization
11%
Generation
forecasting
10%
Customer
pricingstrategy
9%
Communications
Self-healing
automatednetwork
13%
Agentco-pilot
12%
Fieldengineer
technicalassistant
11%
Media
Chatbotstohelpwith
contentretrieval
andcompliancequeries
18%
Frauddetectionandprevention
14%
Dynamicadcampaignsandplacement
10%
Banking
Fraudmanagement
29%
Cardsandpayments
29%
Knowyourcustomer
6%
Energy
Healthandsafety
14%
Automaticanalysisandwork-ordergeneration
13%
Tradingpredictions
11%
CG&S
Real-timecustomer
9%
Agilebrandexperiencedesignanddevelopment
7%
Hyper-personalizedconsum-erprofilingandsegmentation
7%
PublicServices
Knowledgemanagementforreportingoranalysis
27%
ITmodernizationandcodegeneration
16%
Backlogreductionsincriticalservices
16%
Retail
Automatedworkforcescheduling
6%
Channel-specific
customersegmentation
6%
Persona-baseddigital
marketingcontentcreation
5%
Source:AccentureResearch.Industriesareorderedbytheshareoffront-runnerswithineachindustry,withlifescienceshavingthegreatestshareandretailthelowestshare.Communicationsandmediaareseparatedinthistable,butnotelsewhere,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金属工具在工艺品制作的创新应用考核试卷
- 轮椅设计与定制考核试卷
- 虚拟IP形象广告考核试卷
- 理解数据一致性在数据库中的实现试题及答案
- 行政组织在公共政策中的作用研究试题及答案
- 石墨在生物医学成像材料的设计考核试卷
- 选矿设备故障诊断与维修考核试卷
- 文化用品行业科技创新考核试卷
- 酒吧经营策略与酒水销售技巧考核试卷
- 公路工程施工质量试题及答案要点
- 抗菌药物使用分级授权表
- GB/T 2774-2006金属锰
- GB 2717-2018食品安全国家标准酱油
- 军人申请病退评残医学鉴定申请表-附表1
- 人物卡通漫画课件
- 六年级国学经典《大学》课件
- 社会工作综合能力(初级)
- 食品生物化学第三章-脂类与食品加工课件
- 人工智能技术介绍完整版人工智能概述、围棋课件
- 暨南大学2021年内招硕士研究生复试方案
- 人教版八年级下册英语全册教案完整版教学设计含教学反思
评论
0/150
提交评论