【埃森哲Accenture】2025人工智能规模化应用领跑者指南行业领导者经验启示_第1页
【埃森哲Accenture】2025人工智能规模化应用领跑者指南行业领导者经验启示_第2页
【埃森哲Accenture】2025人工智能规模化应用领跑者指南行业领导者经验启示_第3页
【埃森哲Accenture】2025人工智能规模化应用领跑者指南行业领导者经验启示_第4页
【埃森哲Accenture】2025人工智能规模化应用领跑者指南行业领导者经验启示_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Thefront-runners’guidetoscalingAI

Lessonsfromindustryleaders

>

accenture

>

Authors

SenthilRamani

GlobalLeadforData&AI,

Accenture

LanGuan

ChiefAIOfficer,Accenture

Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders

PhilippeRoussiere

GlobalLeadfor

InnovationandAI,

AccentureResearch

2

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders3

Abouttheresearch

Wesurveyed2,000C-suiteanddata-science

executives,wholead1,998oftheworld’slargest

companies(revenuesgreaterthan$1billion,whichare

headquarteredin15countries(Australia,Brazil,Canada,China,Germany,France,India,Italy,Japan,SaudiArabia,Singapore,Spain,UnitedArabEmirates,UnitedKingdomandUnitedStates)andoperateinnineindustries

(banking,insurance,energy,consumergoodsand

services,lifesciences,utilities,retail,publicservicesandcommunicationsandmedia).Thesurvey,fieldedfrom

JunetoJuly2024,aimedtoshedlightonhowcompaniesdevelopanddeployAImodelstocreatefinancialand

non-financialvalue.Thesurveycoveredtopicssuch

asorganizations’dataandAIstrategy,dataandAI

architecture,budgetsfor—andinvestmentsin—strategicbets,talentstrategy,ecosystemstrategy,responsibleAI,AI-relatedchallengesandAIadoptionrates.

Toidentifythemostimportantstrategicbets(see“Get

strategic,”above),wealsointerviewednumerousC-suiteexpertswithinandoutsideAccenture.Inaddition,we

deployedmachinelearningtoidentifyboththekey

capabilitiesassociatedwithscalingstrategicbetsand

companies’progressindevelopingthosecapabilities.

TheresearchwasfurtherenrichedwithinsightsfromourextensiveexperiencehelpingclientsscaleAIsolutions.Bydrawingonthesediverseinputs,ourfindingsthus

capturebothstrategicperspectivesonAIandreal-worldexecutionchallenges.

Forthepurposesofthisreport,“scalingAI”refersto

theprocessofexpandingAIimplementationacrossan

enterprisetoachievebroader,moreimpactfuloutcomes.ScalingincludesintegratingAIintodiversebusiness

processesandworkflows;ensuringwidespreadadoptionacrossassetsandemployees;seamlesslyintegrating

AIwithexistingsystems;drivinginnovationtogaina

competitiveedgeinthemarket;andotherwiseimprovingkeyperformancemetrics.“GenerativeAI”describes

anumbrellatermforartificialintelligencethatcan

producebrand-newoutput—suchastext,images,videos,audioandcode.

Executivesummary

ThougheverybusinessmaywantanAI-powerededge,manycompaniesarestillstrugglingtoadvancebeyondtheirinitial

AIexperiments.Abigreasonforthis,ourresearchalsoshows,islowdata“readiness”—whichariseswhenalltypesofdata,

especiallyunstructureddata,arenotusedtothemax.

Encouragingly,mostbusinessleadersrecognizethischallenge.Forexample,70%ofthecompanieswesurveyedacknowledgedtheneedforastrongdatafoundationwhentryingtoscaleAI.

Data,ofcourse,isn’ttheonlyobstacletoenterprisereinvention

withgenAI.OutdatedITsystems,aswellasworkers’lackofaccessto,respectively,genAItools,comprehensivetrainingandclear

guidancefromleadershiparesignificantbarriers,too.

Atthesametime,ourresearchrevealedthatasmallminorityofcompanies(“front-runners”)arealreadyachievingconsiderablesuccessatreinventingtheirenterpriseswithgenAI.These

companiesconsistentlygetoneveryimportantthingright:They combinewhatwecall“tablestakes”investmentsingenAIwith“strategicbets”(seesidebar,“Getstrategic”).

Front-runners,forexample,useagenticAIintheirtablestakesto

boostefficiency.Andintheirstrategicbets,theydeployagenticAItoradicallyreinventtheirorganizationalprocessesandworkflows.

70%ofthecompanies

wesurveyed

acknowledgedthe

needforastrongdata

foundationwhen

tryingtoscaleAI.

Forbusinesses,securingasustainedadvantageovercompetitorswaslongtheHolyGrail—acoveted,yetelusiveprize.Today,

however,generativeartificialintelligenceandotherformsofAI

haveflippedthescript,bringingthepreviouslyunattainablewithinreach.That’swhytheworld’slargestcompaniesareinvesting

heavilyindataandAI.

ButreinventingtheenterprisewithgenerativeAI(genAI)isn’t

simplyamatterofdeployingafewchatbots.ReinventionisaboutbuildingadvancedAIcapabilitieslike“agenticarchitecture,”

networksofAIagentsthatgobeyondautomatingroutinetaskstoorchestratingentirebusinessworkflows.

Endowedwithsophisticatedreasoning,AIagentscollaborate

autonomouslytoimprovequality,productivityandcost-efficiencyatscale.Agenticarchitectureisspreadingfast:one-thirdofthe

companieswesurveyedforthisreport(See‘’Abouttheresearch’’onpage38)arealreadyusingAIagentstostrengthentheir

innovationcapabilities.

ReinventionthusrequiresintegratingAIdeeplyintothecoreofacompany’sstrategy.Todothis,businesses,undertheproactiveleadershipoftheirCEOandboard,mustgobeyondsurface-levelapplicationsofAIandprioritizestructuralandstrategicchangesthatunlockAI’sfullpotential.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders4

Getstrategic

“Strategicbets”aresignificant,long-term

investmentsingenAIthatfocusonthe

coreofacompany’svaluechain(suchas

underwritingandclaimsforaninsurer,

assetmanagementforautilityand,R&D

foralifesciencesfirm)andthatalsooffer

averylargepayoff.Strategicbetsaimto

maximizethepotentialofgenAItodrive

transformative,industry-specific,process-

levelefficiencies,aswellasexceptional

productivity,innovationandrevenuegrowth.

“Tablestakes”aretheopposite:foundational

investmentsthatdrivebroadAIadoptionwithinanorganizationandvalidatethetechnology’s

abilitytohandlespecificusescases(suchas

customer-supportcentersthatseamlesslymovebetweentextandvoiceinteractions).While

tablestakesofferonlyincrementalvalue,theyarestillessentialproofpointsofAImaturity.

Soevenastheyfocusonafewstrategicbetstodriveenterprisereinvention,companies

shouldcontinuewithtablestakesaswell.

Touncoverthemostimportantstrategicbets

ineachofthenineindustrieswestudied,we

solicitedtheviewsofAccentureexpertswhohaveadvisedclientson2,000recentgenAIprojects.

WealsointerviewedexternalAIexpertsatvariouslargecompaniesaroundtheworld.Through

theseconsultations,wearrivedat105strategicbets—orjustover11perindustry,onaverage.

(Someindustrieshadmorestrategicbetsthanothers;see“Appendix1:The105strategicbets”and“Appendix2:Researchmethodology.”).

Later,oursurveyof2,000executives*frommanyoftheworld’slargestcompaniesrevealedthe

extenttowhichtheseorganizationshaveadoptedgenAIbyscalingtheirrespective,industry-

focused,strategicbets.Companiesintheutilitiesindustry,say,wereaskedabouttheirexperiencewith10utilities-focusedstrategicbets.One

question,forexample,assessedcompanies’levelofgenAIadoptionaroundtheirstrategicbeton“augmentedassetmanagement”.Companies

couldthenansweralongaspectrum,from“noadoption”to“fullscaling”acrosstheenterprise.

Wefoundthat34%ofsurveyed

companieshavescaledatleastone

strategicbet.SuchcompaniesalsospendsignificantlymoreoncloudandAI

(devoting51%oftheirtechnologybudgetstotheseareas)thandocompaniesthat

havenotscaledanystrategicbets(45%oftheirrespectivetechbudgets).

5

>Thefront-runners’guidetoscalingAI:LessonsfromindustryleadersThesurveycovered2,000executives,from1,998companies.

Thestatedmarginoferroris+/-2.2percentagepointsatthe95%confidenceintervalmidpoint.

Companiesthatscalestrategicbetsareusually

delightedwiththeirfinancialperformanceaswell.Forinstance,comparedtocompetitorsthathave

notdoneso,companiesthathavescaledatleastonestrategicbetarenearlythreetimesmorelikelyto

havetheirreturnoninvestment(ROI)fromgenAIsurpasstheirforecasts.

Butregardlessofwhethertheyhavealot,oralittle,worktodobeforetheyscalemorestrategicbets,allthecompanieswesurveyedexpectbigthingsfromreinventionwithgenAI.Onaverage,theseorganizationsexpecta13%

increaseinproductivity,a12%increaseinrevenuegrowth,an11%improvementincustomerexperience,andan11%decreaseincostswithin18monthsof

deployingandscalinggenAIacrosstheirenterprise.

Drawingonourempiricalresearchandextensiveclientwork,thisreport

exploresthedistinguishingtraitsofAIreinvention-readycompanies,which

remainpoorlyunderstood.Inthefollowingpages,weidentifytheessential

dataandAIcapabilitiesthatfront-runnerspossess—anddescribesfive

imperativesthatallowfront-runnerstoscaletheirstrategicbetseffectively(foradditionalanalysisofthefiveimperatives,seetheAccenturereports,“

Making

ReinventionRealwithGenAI

”and“

ReinventionintheageofgenerativeAI

”):

1.Leadwithvalue

2.Reinventtalentandwaysofworking

3.BuildanAI-enabled,securedigitalcore

4.ClosethegaponresponsibleAI

5.Drivecontinuousreinvention

Asthisreportmakesclear,artificialintelligencehasalreadymovedpastits

familiarroleasapowerfultoolforboostingefficiency.Whenusedtoitsfull

potential,AIisnowsomethingfargreater:anunstoppableforceforenterprisereinvention,allowingcompaniestogrowfasterandinnovatebetterthanrivals.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders6

Whatmakesacompanyreinvention-readyforAI?

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders7

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders8

In2022,weidentifiedasmallgroupofcompaniesthat

wereleadersinfoundationaldataandAIcapabilities

(seeAppendix2).1Today,these“AIreinvention-ready”

companiesstillexcelatthebasics.Butthey’realsohoningtheirgenAIcapabilitiestogreateffect.

AIreinvention-readycompanies,ourresearchalsoshows,representonlyafractionoftheworld’slargestbusinesses(just15%oftheorganizationswestudied).Inourschema,thesecond-mostadvancedgrouparecompaniesthat

areprogressingwithAI(43%ofcompanies),followedbycompaniesthataremerelyexperimentingwithAI(42%).

Here’showwearrivedatthesethreegroups.Wecreatedanindextomeasureandcategorizecompaniesbasedontheirmaturityindevelopinganddeployingthecapabilitiesthat

aremostcriticaltoscalingstrategicbetsingenAI.

Wediscoveredthatthemostadvancedgroup,AI

reinvention-readycompanies,haveachievedhighlevels

ofmaturity(seetheirlarge“webs”inFigure1),inboththefoundationalcapabilitiesandinwhatwecallthe“new

dataandAIessentialcapabilities”forgenAI.Thelatterarecomprisedoflargelanguagemodeloperations(LLMOps)maturity,datamanagementandgovernance(DM&G)–

newessentials,datasource,foundationmodelspractice,andtalentpractice.(SeeAppendix2forthefulllistof

foundationalandnewcapabilities.)

Figure1:Webofprogress

Reinvention-readycompanieshavemorematuredataandAIcapabilities

capabilities

experimentingwithAI

F1

progressingwithAI

F1

AIreinvention-ready

F1

F1:Data&AIstrategy

F2:AI

platformmaturity

75%

50%

25%

F3:DM&Gmaturity

&AIessentialcapabilities

N1

N1

:LLMOpsMaturity

N2:DM&G

new

essentials

N1

75%

50%

25%

N5

N4N3

N5

N4N3

N3:Datasource

Foundational

F5

F3

F4

F2

F5

F3

F4

F2

F5

F3

F4

F2

F5:RAImaturity

F4:Talent

maturity

NewData

N1

N5

N4N3

N2

N5:Talentpractice

N2

N2

N4:Foundationmodelspractice

Source:AccentureResearch.Thelargertheareaoftheweb,themorematurethecapabilities.

Figure2:AppreciatetheEight

Only8%oforganizationsareAIreinvention-readyfront-runners

Meanwhile,companiesthatareprogressingwithAIdemonstrate

8%

7%

43%

42%

intermediatelevelsofmaturityinthosecapabilities(medium-sizedwebsinFigure1).Andcompaniesthatareexperimentinghavecomparativelylow

front-runners

fast-followers

levelsofmaturity(smallwebs).

AI

reinvention-ready

AIreinvention-readycompanieshave,inshort,developedstrongdigitalcores,whichareessentialforscalingAIanddata-driveninitiatives,

ensuringdataaccessibility,computingperformanceandsecurity.2

Withoutastrongdigitalcore,businessesaremorelikelytounderperformandstruggletoadapttorapidlychangingenvironments.

That’sthemacroview.Themicroview,however,showsthatnotall

progressingwithAI

reinvention-readycompaniesareequallyproficientatscalingstrategicbetsingenAI.Infact,wefoundthatsomeofthesecompanies(“front-runners”)havealreadyscaledmultiplestrategicbets,whileothers(“fastfollowers”)haveyettoscaleanystrategicbets(Figure2).

experimentingwithAI

Source:AccentureResearch.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders9

Breakingaway—how

front-runnersarescalingAI

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders10

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders11

Whatdistinguishesfront-runnersfromfast-followersistheirrelativeaptitudeatdeployingandscalingstrategicbets.

Indeed,front-runnersnotonlyplacemorestrategicbetsbutalsoscalethematasignificantlyhigherratethanothercompaniesdo.AsFigure3illustrates,front-runnershave,onaverage,alreadyscaled34%of

thestrategicbets(orthreetofourbets)thataremostrelevanttotheirindustry;another40%offront-runners’strategicbetsareintheearlystagesofscaling.

Fast-followers,ontheotherhand,havenotyetfullyscaledany

strategicbets,withonly33%intheearlystagesofscaling.The

numbersforcompaniesthatareprogressingwithAI(8%ofstrategic

betsscaled,32%intheearlystages)andforcompaniesthatareonlyexperimentingwithAI(5%and28%,respectively)similarlyunderscorethegaptheyneedtoclose.

Figure3:Scaleforsuccess

front-runnershavescaled34%oftheirstrategicbets,onaverage

front-runners

fast-followers

progressingwithAI

experimentingwithAI

60%

30%

0%

60%

30%

0%

60%

30%

0%

60%

30%

0%

40%

23%

3%

34%

51%

16%

0%

33%

44%

8%

16%

32%

45%

22%

28%

5%

not

plannedearlyscaled

stages

planned

Source:AccentureResearch.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders12

Sowhydofront-runnersexcelatscalingstrategic

bets?Afterall,morefast-followers(89%)thanfront-runners(81%)havealreadydevelopedthefiveAI

foundationalcapabilitiesreferencedinFigure1.

Tounderstandwhy,lookfirsttothenewdataandAI

essentialcapabilitiesforgenAI.Here,front-runners

haveaclearedge:Wefoundthat28%offront-runnershavedevelopedallfiveofthesecapabilities,comparedtoonly19%offast-followers.

Theedgeisalsoevidentwhenfront-runnersare

comparedtoothercompanies.AsFigure4shows,97%offront-runnershavedevelopedthreeormoreofthenewdataandAIessentialcapabilitiesfor

genAI,comparedtojust5%ofcompaniesthatareexperimentingwithAI(Figure4).

Figure4:ThenewdataandAIessentialcapabilitiesforgenAI

Nearlyallfront-runnershaveadoptedthreeormoreofthese

front-runners

fast-followers

progressingwithAI

experimentingwithAI

97%offront-runnershaveachievedatleast3outof5advancedmaturitylevelofNewData&AIEssential

capabilities

Only5%ofexperimentingwithAImanagetoachieve3outof5advancedmaturitylevel

ofNewData&AIEssentialcapabilities

#ofNewDataandAI

1outof5

2outof5

3outof5

4outof5

5outof5

0outof5

EssentialCapabilities

achievingadvancedlevel

Source:AccentureResearch.

Considerotherdistinguishingtraitsoffront-runners.ThesecompaniesaremorelikelytohavestrongCEOandboard

sponsorshipfortheirAIinvestmentsthanfast-followers

(19%vs.5%,respectively,ofsurveyedcompanies).Front-runnersarealsomorelikelythanfast-followers(59%vs.

36%)tohavefullyintegratedtheircoreAIstrategy,criticalprocesses,andtechnologycapabilitiesintoacohesive

framework.Morebroadly,front-runnersarethreetimes

morelikelythanothercompaniestohaveachievedahighlevelofmaturitywiththeirAIplatforms.

Front-runnersprioritizepeople-centeredchange,too:

They’refourtimesmorelikelythanfast-followerstofocusonculturalissuesthatimpedechange;threetimesmorelikelytoemphasizetalentalignmentandtransparent

communication;threetimesmorelikelytouseinsightsfrombehavioralsciencetocontinuouslymonitorthe

impactofAI-drivenchange;andtwotimesmorelikelytoofferstructuredtrainingprogramsforemployees.

Tobesure,front-runnersdon’thaveanedgeateverythingAI-related.Fast-followers,forexample,areparticularly

strongattalentdevelopment;96%offast-followersfocusoncultivatingspecializedAItalent(suchasAIengineers),comparedto88%offront-runners.

Fastfollowersareneverthelessheldbackinthisarea,

ourresearchalsorevealed,becausetheymostlylack

acentralizedoperatingmodel—suchasa“centerof

excellence”thatservesasthefocalpointforacompany’sAIstrategy,developmentanddeployment.Forexample,only16%offast-followershaveacentralizedoperating

model,while57%offront-runnersdo.

Anotherimportantdifferentiatorforfront-runnersisthat

they’remorelikelytobeskilledatusingandcontinuouslyimprovingautonomousAIagentsthataretailoredto

industryneeds.Forinstance,65%offront-runnersare

skilledinthisarea,comparedto50%offast-followers.

Front-runners,likewise,aremoreadeptthanfast-followersatdefiningthebusinessvaluefromtheirAIusecases.

Whenitcomestodata,fast-followersdopossesscertainadvantages.Forexample,96%areverystrongindata

governance,comparedto83%offront-runners.Dittofordataplatforms(98%vs.90%,respectively).

Butinmanyotherdata-relatedpractices,fast-followers

lagfarbehind.Forexample,17%offront-runnersuse

“retrieval-augmentedgeneration”toenhancetheirLLMs,whileonly1%offast-followersdo.Similarly,front-runners

aremuchmorelikelythanfast-followerstodothingslikeuse“knowledgegraphs”tostructureandcontextualizedata(26%v.3%)andmanagedataeffectivelyoverthe

entiredatalifecycle(22%vs.6%).

Whenitcomestoleveragingdiversedatasources,front-

runnersholdaclearedgeaswell.Forinstance,they’re

morelikelythanfast-followerstoheavilyusezero-party

data(44%vs.4%),second-partydata(30%vs.7%),third-partydata(25%vs.8%)andsyntheticdata(35%vs.6%).Fast-followers,incontrast,areonlyslightlymorelikely

thanfront-runnerstoheavilyusefirst-partydata(60%vs.67%)andtacitknowledge(72%vs.68%).3

Beforegoingallinonstrategicbets,Telstra,Australia’s

leadingtelecommunicationscompany,wiselysetabout

simplifyingandmodernizingitsdataecosystem.This

involvesconsolidatingover40platformsintoasmall,

integrated,datafoundation.Oncetherearchitectingis

completed,TelstrawillbefarbetterplacedtorapidlyscaleitsgenAIcapabilities.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders13

TheAIrace—whichindustriesaretakingthelead

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders14

Ourresearchalsorevealedtheindustriesthathave

madethemostprogressscalingstrategicbets.Figure

5illustrateshowfront-runnersaremostprevalent

inthelifesciences(accountingfor12%ofsurveyed

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders

companiesinthatindustry)andleastcommoninretail(2%,respectively).

Figure5:TheAIlife

front-runnersaremostprevalentinthelife-sciencesindustry

fast-followers

progressingwithAI

experimentingwithAI

12%

6%

4%

4%

6%

12%

9%

2%

10%

39%

29%

45%

39%

42%

32%

47%

63%

49%

37%

55%

43%

49%

45%

48%

39%

30%

39%

LifeSciences

Insurance

Utilities

C&M

Banking

Energy

CG&S

PublicServices

Retail

8%

7%

42%

44%

Average

15

Industriesorderedbytheshareoffront-runnerswithineachindustry.C&M=communicationsandmedia;CG&S=consumergoodsandservices.Source:AccentureResearch.

front-runners

12%

10%

9%

9%

8%

7%

5%

5%

2%

Figure6showsthethreemost-scaledstrategic

betsbyindustry.Inlifesciences,forexample,16%

ofcompanieshavescaledtheirstrategicbeton

acceleratingtimetoapproval;14%havescaledtheirstrategicbetonacceleratingtimetoclinic;and13%havescaledtheirstrategicbetonmaximizingthe

valuepropositionofmedicines.

>Thefront-runners’guidetoscalingAI:Lessonsfromindustryleaders

Figure6:Threecheers

Thethreemostscaledstrategicbetsbyindustry

Industry#1#2#3

LifeSciences

Acceleratetimetoapproval

16%

Acceleratetimetoclinic

14%

Maximizehealthandeconomicoutcomes

13%

Insurance

Fraud

detection

23%

Call

assistance

13%

Claimsintake

12%

Utilities

Workforceoperationsoptimization

11%

Generation

forecasting

10%

Customer

pricingstrategy

9%

Communications

Self-healing

automatednetwork

13%

Agentco-pilot

12%

Fieldengineer

technicalassistant

11%

Media

Chatbotstohelpwith

contentretrieval

andcompliancequeries

18%

Frauddetectionandprevention

14%

Dynamicadcampaignsandplacement

10%

Banking

Fraudmanagement

29%

Cardsandpayments

29%

Knowyourcustomer

6%

Energy

Healthandsafety

14%

Automaticanalysisandwork-ordergeneration

13%

Tradingpredictions

11%

CG&S

Real-timecustomer

9%

Agilebrandexperiencedesignanddevelopment

7%

Hyper-personalizedconsum-erprofilingandsegmentation

7%

PublicServices

Knowledgemanagementforreportingoranalysis

27%

ITmodernizationandcodegeneration

16%

Backlogreductionsincriticalservices

16%

Retail

Automatedworkforcescheduling

6%

Channel-specific

customersegmentation

6%

Persona-baseddigital

marketingcontentcreation

5%

Source:AccentureResearch.Industriesareorderedbytheshareoffront-runnerswithineachindustry,withlifescienceshavingthegreatestshareandretailthelowestshare.Communicationsandmediaareseparatedinthistable,butnotelsewhere,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论