2025年四川遂宁市射洪中学7年级下册数学期末考试定向训练试卷(含答案详解版)_第1页
2025年四川遂宁市射洪中学7年级下册数学期末考试定向训练试卷(含答案详解版)_第2页
2025年四川遂宁市射洪中学7年级下册数学期末考试定向训练试卷(含答案详解版)_第3页
2025年四川遂宁市射洪中学7年级下册数学期末考试定向训练试卷(含答案详解版)_第4页
2025年四川遂宁市射洪中学7年级下册数学期末考试定向训练试卷(含答案详解版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川遂宁市射洪中学7年级下册数学期末考试定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.2、在雨地里放置一个无盖的容器,如果雨水均匀地落入容器,容器内水面高度与时间的函数图象如图所示,那么这个容器的形状可能是()A. B. C. D.3、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是()A. B. C. D.4、已知,那么的值是().A. B.4042 C.4046 D.20215、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示:温度℃﹣20﹣100102030传播速度/(m/s)319325331337343349下列说法错误的是()A.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10℃时,声音5s可以传播1655mD.温度每升高10℃,传播速度增加6m/s6、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.7、下列各式,能用平方差公式计算的是()A.(2a+b)(2b﹣a) B.(﹣a﹣2b)(﹣a+2b)C.(2a﹣3b)(﹣2a+3b) D.()(﹣)8、如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A. B.C. D.9、在进行路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.s、v是变量 B.s、t是变量 C.v、t是变量 D.s、v、t都是变量10、若x2+mxy+25y2是一个完全平方式,那么m的值是()A.±10 B.-5 C.5 D.±5第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、若长方形的周长为16,长为y,宽为x,则y与x的关系式为

___.2、一空水池,现需注满水,水池深4.9m,现以均匀的流量注水,如下表:水的深度(m)0.71.42.12.8注水时间(h)0.511.52由上表信息,我们可以推断出注满水池所需的时间是______h.3、若α=25°57′,则2α的余角等于_____.4、(1)已知与互余,且,则________.(2)+________=180°.(3)若与是同类项,则m+n=________.5、已知,如图,AB=AC,AD=AE,BE与CD相交于点P,则下列结论:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4对全等三角形;正确的是_____(请填写序号).6、一次研究中发现某个新冠肺炎病毒的尺寸大约0.00000003m,则0.00000003用科学记数法可写为_____.7、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50°,则平面镜与水平地面的夹角的度数是______.8、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.9、75°的余角是______.10、已知,,则______.三、解答题(6小题,每小题10分,共计60分)1、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?2、王老师在黑板上写下了四个算式:①;②;③;④;……认真观察这些算式,并结合你发现的规律,解答下列问题:(1);.(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.3、如图,已知在△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等?请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?4、用除颜色外完全相同的球设计摸球游戏如下:(1)若袋中装有完全相同的10个红球,则从中随机摸出1球是红球的概率为;(2)若袋中装有除颜色外完全相同的5个红球和5个黑球,则从中随机摸出1球,得到黑球的的概率为;(3)若袋中装有除颜色外完全相同的2个绿球、7个红球和1个黑球,则从中随机摸出1球,摸到绿球的概率为;(4)若袋中装有除颜色外完全相同的2个绿球、7个红球和1个黑球,再向袋中放入4个黄球,则从中随机摸出一个球是黄球的概率为.5、如图,方格纸中每个小正方形的边长都是1.(1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.(2)求四边形PMAN的面积.6、如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是,理由是.-参考答案-一、单选题1、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.2、C【分析】根据图象得到高度随时间的增大,高度增加的速度,即可判断.【详解】根据图象可以得到:杯中水的高度随注水时间的增大而增大,而增加的速度越来越小.则杯子应该是越向上开口越大.故杯子的形状可能是.故选:.【点睛】本题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.3、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得.【详解】解:由题意,从这4条线段中任选三条共有4种结果,即、、、,由三角形的三边关系定理可知,能组成三角形的有2种结果,即和,则所求的概率为,故选:A.【点睛】本题考查了求概率,熟练掌握等可能性下的概率计算方法是解题关键.4、C【分析】设,则得将变形得到,即可求解.【详解】解:设,则,,,,故选:C.【点睛】本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解.5、C【分析】根据自变量和因变量的概念判断A,根据表格中声音的传播速度与温度的变化情况判断B,根据路程=速度×时间计算C,根据速度的变化情况判断D.【详解】解:A选项,自变量是温度,因变量是传播速度,故该选项正确,不符合题意;B选项,温度越高,传播速度越快,故该选项正确,不符合题意;C选项,当温度为10℃时,声音的传播速度为337m/s,所以5秒可以传播337×5=1685m,故该选项错误,符合题意;D选项,温度每升高10℃,传播速度增加6m/s,故该选项正确,不符合题意;故选C.【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.6、A【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【点睛】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键.7、B【分析】根据平方差公式为逐项判断即可.【详解】A.既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B.原式,符合平方差公式,故本选项符合题意;C.原式,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D.原式只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B.【点睛】本题考查平方差公式,掌握平方差公式为是解答本题的关键.8、B【分析】根据三角形全等的判定定理(定理和定理)即可得.【详解】解:A、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;B、此项满足定理,与全等,符合题意;C、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;D、中,角度为的夹边长为,则此项不满足定理,与不全等,不符题意;故选:B.【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.9、C【分析】根据常量和变量的定义判定,始终不变的量为常量【详解】s始终不变,是常量,v和t会变化,是变量故选:C【点睛】本题考查常量和变量的区分,注意,常量是始终不变的量,因此有些不变的字母也是常量.10、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.二、填空题1、y=−x+8【分析】本题根据长方形的周长=2(长+宽),代入对应数据,对式子进行变形,即可解答.【详解】解:由题意可得,2(x+y)=16,整理可得,y=−x+8.故答案为:y=−x+8.【点睛】本题主要考查的是变量之间的关系,通过理解题意,列出等式是解决问题的关键.2、3.5【分析】由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,由此得出答案;【详解】解:由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,∴注水时间每增加1个小时,水的深度就加深1.4m,∴4.9÷1.4=3.5(小时)∴推断出注满水池所需的时间是3.5小时;故答案为:3.5【点睛】本题考查了用表格表示的变量之间的关系,正确理解题意、明确求解的方法是关键.3、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.4、【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m、n的值,然后代值计算即可.【详解】解:(1)与互余,且,∴;故答案为:;(2);故答案为:;(3)∵与是同类项,∴,∴,∴.故答案为:.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.5、①②④【分析】先证△AEB≌△ADC(SAS),再证△EPC≌△DPB(AAS),可判断①;可证△APC≌△APB(SSS),判定断②;利用特殊等腰三角形可得可判断③,根据全等三角形个数可判断④即可【详解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正确;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正确;当AP=PB时,∠PAB=∠B,当AP≠PB时,∠PAB≠∠B,故③不正确;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4对全等三角形,故④正确故答案为:①②④【点睛】本题考查三角形全等判定与性质,掌握全等三角形的判定方法与性质是解题关键.6、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000003=故答案为:【点睛】本题考察了绝对值小于1的数利用科学记数法表示,需要注意负整数指数幂是本题的易错点.7、65°【分析】作CD⊥平面镜,垂足为G,交地面于D.根据垂线的性质可得∠CDH+α=90°,根据平行线的性质可得∠AGC=∠CDH,根据入射角等于反射角可得,从而可得夹角的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,交地面于D.∴∠CDH+α=90°,根据题意可知:AG∥DF,∴∠AGC=∠CDH,,∴∠CDH=25°,∴α=65°.故答案为:65°.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是掌握平行线的性质、明确法线CG平分∠AGB.8、2<AC<10【分析】由BF=CE得到BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.9、15°【分析】根据和为的两个角互为余角计算即可.【详解】解:75°的余角是90°﹣75°=15°.故答案为:15°.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.10、13【分析】根据完全平方公式即可得出答案.【详解】解:∵x+y=5,xy=6∴(x+y)2=x2+2xy+y2=25∴x2+y2=25−2xy=25−2×6=13故答案为:13.【点睛】本题考查的是完全平方公式:(a+b)2=a2±2ab+b2,熟练掌握此公式是解题的关键.三、解答题1、(1)出现“5”的概率是;(2)出现“6”的概率是0;(3)出现奇数的概率是.【分析】(1)根据出现的机会有两次,再利用概率公式计算即可;(2)根据出现的机会没有,可得出现是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现的机会有两次,所以出现“5”的概率是:,(2)因为出现的机会没有,所以出现“6”的概率是:,(3)因为出现奇数的机会有四次,所以出现奇数的概率是【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.2、(1),;(2)见解析【分析】(1)根据题目给出的规律写出和即可;(2)利用平方差公式计算得出答案.【详解】(1),,故答案为:,;(2),∵n为正整数,∴两个连续奇数的平方差是8的倍数.【点睛】此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键.3、(1)△BPD与△CQP全等,理由见解析;(2)当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【详解】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC是等边三角形,D为AB的中点.∴∠ABC=∠ACB=60°,BD=PC=5cm,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=(8-3t)cm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC且BP=CQ时,△BPD≌△CQP(SAS),则8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,△BPD≌△CPQ(SAS),则5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4、(1)1;(2);(3);(4).【分析】(1)由于袋中只有红球,则摸出红

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论