强化训练-北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克试题(含答案解析版)_第1页
强化训练-北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克试题(含答案解析版)_第2页
强化训练-北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克试题(含答案解析版)_第3页
强化训练-北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克试题(含答案解析版)_第4页
强化训练-北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克试题(含答案解析版)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市朝阳区日坛中学7年级数学下册第四章三角形专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为()A.2 B.4 C.6 D.102、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.3、根据下列已知条件,能画出唯一的的是()A., B.,,C.,, D.,,4、如图,点,,,在一条直线上,,,,,,则()A.4 B.5 C.6 D.75、如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D6、下列所给的各组线段,能组成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,137、以下列各组线段为边,能组成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm8、如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A. B.C. D.9、下列长度的各组线段中,能组成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,510、一个三角形的两边长分别是3和5,则它的第三边可能为()A.2 B.4 C.8 D.11第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.2、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).3、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.4、已知,如图,AB=AC,AD=AE,BE与CD相交于点P,则下列结论:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4对全等三角形;正确的是_____(请填写序号).5、如图,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一个条件是____.6、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.7、已知a,b,c是的三边长,满足,c为奇数,则______.8、如图,△ABE≌△ACD,∠A=60°,∠B=20°,则∠DOE的度数为_____°.9、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知,,且的面积为60平方厘米,则的面积为______平方厘米;如果把“”改为“”其余条件不变,则的面积为______平方厘米(用含n的代数式表示).10、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于_______三、解答题(6小题,每小题10分,共计60分)1、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)当直线MN绕点C旋转到图①的位置时,易证△ADC≌△CEB(不需要证明),进而得到DE、AD、BE之间的数量关系为.(探究)(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN绕点C旋转到图③的位置时,直接写出DE、AD、BE之间的数量关系.2、直线l经过点A,在直线l上方,.(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.3、如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.4、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.(1)若,则的度数为_______;(2)直接写出与的数量关系:_________;(3)直接写出与的数量关系:__________;(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.5、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.6、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.-参考答案-一、单选题1、A【分析】根据题意可得,,△ABD和△BCD的周长差为线段的差,即可求解.【详解】解:根据题意可得,△ABD的周长为,△BCD的周长为△ABD和△BCD的周长差为故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键.2、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确.【详解】解:∵PA=100m,PB=90m,∴根据三角形的三边关系得到:,∴,∴点A与点B之间的距离不可能是20m,故选A.【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键.3、C【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B.,,,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C.,,,符合全等三角形的判定定理ASA,能画出唯一的三角形,故本选项符合题意;D.3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.4、A【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,,∴,∴,∵,∴;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.5、B【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.7、C【分析】根据三角形三边关系求解即可.【详解】解:A、∵,∴3cm,3cm,6cm不能组成三角形,故选项错误,不符合题意;B、∵,∴2cm,5cm,8cm不能组成三角形,故选项错误,不符合题意;C、∵,∴25cm,24cm,7cm能组成三角形,故选项正确,符合题意;D、∵,∴1cm,2cm,3cm不能组成三角形,故选项错误,不符合题意.故选:C.【点睛】此题考查了三角形三边关系,解题的关键是熟练掌握三角形三边关系.三角形两边之和大于第三边,两边之差小于第三边.8、B【分析】根据三角形全等的判定定理(定理和定理)即可得.【详解】解:A、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;B、此项满足定理,与全等,符合题意;C、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;D、中,角度为的夹边长为,则此项不满足定理,与不全等,不符题意;故选:B.【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.9、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D能构成三角形;故选D.【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.10、B【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边,设第三边为,可得,再解即可.【详解】设第三边为,由题意得:,.故选:B.【点睛】此题主要考查了三角形的三边关系:掌握第三边大于已知的两边的差,而小于两边的和是解题的关键.二、填空题1、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.3、2cm【分析】易证∠CAD=∠BCE,即可证明BEC≌△DAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.【详解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2cm.故答案是:2cm.【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.4、①②④【分析】先证△AEB≌△ADC(SAS),再证△EPC≌△DPB(AAS),可判断①;可证△APC≌△APB(SSS),判定断②;利用特殊等腰三角形可得可判断③,根据全等三角形个数可判断④即可【详解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正确;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正确;当AP=PB时,∠PAB=∠B,当AP≠PB时,∠PAB≠∠B,故③不正确;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4对全等三角形,故④正确故答案为:①②④【点睛】本题考查三角形全等判定与性质,掌握全等三角形的判定方法与性质是解题关键.5、AB=AD(答案不唯一)【分析】根据SAS即可证明△ABC≌△ADC.【详解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案为:AB=AD(答案不唯一).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.6、三角形两边之和大于第三边【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可.【详解】解:的周长=四边形BDEC的周长=∵在中∴即的周长一定大于四边形BDEC的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.7、7【分析】绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.【详解】解:,由三角形三边关系可得为奇数故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.8、100【分析】直接利用三角形的外角的性质得出∠CEO=80°,再利用全等三角形的性质得出答案.【详解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案为:100.【点睛】此题主要考查了全等三角形的性质以及三角形的外角的性质,求出∠CEO=80°是解题关键.9、6【分析】连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积.【详解】如图,连接CF,∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面积为6平方厘米;当BE=nCE时,S△AEC=,设S△AFD=S△CFD=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面积为平方厘米;故答案为:【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.10、15【分析】连接DF,根据AE=ED,BD=3DC,可得,,,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF,∵AE=ED,∴,,∵BD=3DC,∴,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴,解得:.故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到,,,是解题的关键.三、解答题1、(1)DE=AD+BE;(2)见解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)与(1)(2)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【详解】解:(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)证明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【点睛】本题考查了邻补角的意义,同角的余角相等,直角三角形的性质,全等三角形的判定和性质等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.2、(1)见解析;(2)猜想:,见解析;(3)见解析【分析】(1)先证明和,再根据证明即可;(2)根据AAS证明得,,进一步可得出结论;(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.【详解】解:(1)证明:∵,,∴,∴∵,∴∴,在与中,∴(2)猜想:,∵∴,∴,在与中∴,∴,,∴(3)分别过点C、E作,,同(1)可证,,∴,∴,∵,,∴在与中∴,∴,∴G为CE的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.3、见解析【分析】根据全等三角形的判定定理ASA可以证得△ACD≌△ABE,然后由“全等三角形的对应边相等”即可证得结论.【详解】证明:在△ABE与△ACD中,,∴△ACD≌△ABE(A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论