强化训练吉林省洮南市中考数学真题分类(实数)汇编综合测试试题_第1页
强化训练吉林省洮南市中考数学真题分类(实数)汇编综合测试试题_第2页
强化训练吉林省洮南市中考数学真题分类(实数)汇编综合测试试题_第3页
强化训练吉林省洮南市中考数学真题分类(实数)汇编综合测试试题_第4页
强化训练吉林省洮南市中考数学真题分类(实数)汇编综合测试试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省洮南市中考数学真题分类(实数)汇编综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若a、b为实数,且,则直线y=axb不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、如图,在数轴上表示实数的点可能(

).A.点P B.点Q C.点M D.点N3、下列四个实数中,是无理数的为(

)A. B. C. D.4、下列二次根式是最简二次根式的是()A. B. C. D.5、下列说法正确的是(

)A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.的平方根是-2D.-2是的一个平方根6、四个数0,1,中,无理数的是()A. B.1 C. D.07、下列说法中:①不带根号的数都是有理数;

②-8没有立方根;③平方根等于本身的数是1;④有意义的条件是a为正数;其中正确的有(

)A.0个 B.1个 C.2个 D.3个8、下列各式是最简二次根式的是(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、若的整数部分为a,小数部分为b,则代数式的值是______.2、-8的立方根与的平方根的和是______.3、若x+3是4的平方根,则x=__________.4、计算:=______;×÷=______.5、7是__________的算术平方根.6、在实数,,4,,,中,设有a个有理数,b个无理数,则________.7、=________.三、解答题(7小题,每小题10分,共计70分)1、计算:(1);(2).2、计算:4×2÷.3、细心观察下图,认真分析各式,然后解答问题.,;,;,…(1)直接写出:______.(2)请用含有(是正整数)的等式表示上述变化规律:______=______,______;(3)求出的值.4、计算(1)(2)5、已知=3,3a﹣b+1的平方根是±4,c是的整数部分,求a+b+2c的平方根.6、计算:7、观察下列一组式的变形过程,然后回答问题:化简:,则,,(1)请直接写出下列式子的值:;.(2)请利用材料给出的结论,计算:的值;(3)请利用材料提供的方法,计算的值.-参考答案-一、单选题1、D【解析】【分析】依据即可得到进而得到直线不经过的象限是第四象限.【详解】解:∵∴解得,∴,∴直线不经过的象限是第四象限.故选D.【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.2、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.3、D【解析】【分析】根据无理数的定义“也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有是无理数故选:D.【考点】本题考查了无理数的定义,熟记定义是解题关键.4、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、D【解析】【分析】根据算术平方根、平方根的定义逐项判断即可得.【详解】A、,16的算术平方根是4,则此项错误,不符题意;B、,16的算术平方根是4,则此项错误,不符题意;C、,4的平方根是,则此项错误,不符题意;D、,4的平方根是,则是的一个平方根,此项正确,符合题意;故选:D.【考点】本题考查了算术平方根、平方根,掌握理解定义是解题关键.6、A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0,1,是有理数,是无理数,故选A.【考点】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7、A【解析】【分析】根据是二次根式有意义的条件、平方根的概念和立方根的概念判断即可.【详解】解:不带根号的数不一定都是有理数,例如π,①错误;-8的立方根是-2,②错误;平方根等于本身的数是0,③错误;有意义的条件是a为非负数,④错误,故选A.【考点】本题考查的是二次根式有意义的条件、平方根的概念和立方根的概念,掌握二次根式中的被开方数是非负数是解题的关键.8、A【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.二、填空题1、2【解析】【分析】先由得到,进而得出a和b,代入求解即可.【详解】解:∵,∴,∵的整数部分为a,小数部分为b,∴,.∴,故答案为:2.【考点】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.2、1或-5【解析】【分析】先求出-8的立方根,由=9,根据平方根的定义求出9的平方根,然后求出它们的和即可.【详解】解:∵-8的立方根为=-2,而=9,则9的平方根为±=±3,∴-2+3=1或-2-3=-5,故答案为:1或-5.【考点】本题考查了立方根、平方根、算术平方根的定义,熟练掌握相关定义及求解方法是解题的关键.3、-1、-5【解析】【详解】由题意得:x+3=2或者x+3=-2,解得:x=-1或-5.故答案:-1、-5.4、

3【解析】【分析】能化简的先化简二次根式,再进行二次根式的乘除运算.【详解】解:(1)==;(2)×÷===3.故答案为(1).

(2).3【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5、49【解析】【分析】根据算术平方根的定义即可解答.【详解】解:因为=7,所以7是49的算术平方根.故答案为:49【考点】本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.6、2【解析】【分析】由题意先根据有理数和无理数的定义得出a、b的值,进而求出的值.【详解】解:,4,,共有4个有理数,即,,共有2个无理数,即,所以.故答案为:2.【考点】本题考查有理数和无理数的定义以及算术平方根的运算,熟练掌握相关定义与运算法则是解题的关键.7、6【解析】【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【考点】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.三、解答题1、(1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并.(1)原式;(2)原式.【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则.2、24.【解析】【分析】直接利用二次根式的乘除运算法则计算即可得出答案.【详解】解:原式=8÷=8×3=24.【考点】本题主要考查了二次根式的乘除运算,正确掌握运算法则是解题的关键.3、(1)(2)(3)【解析】【分析】(1)由给出的数据写出的长即可;(2)由(1)…和S1、S2、S3…Sn,找出规律即可得出结果;(3)首先求出再求和即可.(1)解:∵;;…故答案为:;(2),;,;,…归纳总结可得:故答案为:(3)∵…,∴【考点】本题主要考查勾股定理的理解,实数的运算规律探究,掌握“从具体到一般的探究方法”是解本题的关键.4、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法.【详解】解:(1)===;(2)==0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.5、±5【解析】【分析】分别根据算术平方根、平方根的意义,无理数的估算求出a、b、c的值,即可求出a+b+2c的值,根据平方根的意义即可求解.【详解】解:∵=3,∴2a﹣1=9,解得:a=5,∵3a﹣b+1的平方根是±4,∴15﹣b+1=16,解得:b=0,∵,∴10<<11,∴c=10,∴a+b+2c=5+0+2×10=25,∴a+b+2c的平方根为=±5.【考点】本题考查了算术平方根、平方根的意义,无理数的估算,熟知算术平方根、平方根的意义是解题关键.6、【解析】【分析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.【详解】解:原式=.故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论