江苏南通市田家炳中学7年级下册数学期末考试同步测试试卷(含答案详解版)_第1页
江苏南通市田家炳中学7年级下册数学期末考试同步测试试卷(含答案详解版)_第2页
江苏南通市田家炳中学7年级下册数学期末考试同步测试试卷(含答案详解版)_第3页
江苏南通市田家炳中学7年级下册数学期末考试同步测试试卷(含答案详解版)_第4页
江苏南通市田家炳中学7年级下册数学期末考试同步测试试卷(含答案详解版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏南通市田家炳中学7年级下册数学期末考试同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是()A. B. C. D.2、下列图形不是轴对称图形的是().A. B. C. D.3、若代数式在实数范围内有意义,则的取值范围是()A. B. C.且 D.且4、下列学习用具中,不是轴对称图形的是()A. B.C. D.5、一本笔记本5元,买x本共付y元,则常量和变量分别是()A.常量:5;变量:x B.常量:5;变量:yC.常量:5;变量:x,y D.常量:x,y;变量:56、从地向地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元,若通话时间分钟,则付话费元与分钟函数关系式是().A. B. C. D.7、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为()A. B. C. D.8、为了奖励在学校运动会中的优胜者,李老师准备用400元钱去买单价为12元的某种笔记本,则他剩余的钱y(元)与购买的笔记本的数量x(本)之间的关系是()A.y=12x B.y=12x+400 C.y=12x﹣400 D.y=400﹣12x9、下列各组图形中,是全等形的是()A.两个含30°角的直角三角形B.一个钝角相等的两个等腰三角形C.边长为5和6的两个等腰三角形D.腰对应相等的两个等腰直角三角形10、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、一个口袋中装有个白球、个红球,这些球除颜色外完全相同,充分搅匀后随机摸出一球是白球的概率为________.2、根据图中的程序,当输入时,输出的结果________.3、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.4、如图,在中,,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,,则的面积是___________.5、邓教师设计一个计算程序,输入和输出的数据如表所示,当输入数据是正整数n时,输出的数据是________.输入数据123456……输出数据……6、若关于x代数式是完全平方式,则常数______.7、从﹣1,0,2和3中随机地选一个数,则选到正数的概率是_____.8、如图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_____.9、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.10、如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有_________种.三、解答题(6小题,每小题10分,共计60分)1、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:该排球社团一共有名女同学,a=.(2)把频数分布直方图补充完整.(3)随机抽取1名学生,估计这名学生身高高于160cm的概率.2、2021秋开学为防控冠状病毒,学生进校园必须戴口置,测体温.某校开通了三条人工测体温的通道,每周一分别由王老师、张老师、李老师三位老师给进校园的学生测体温(每个通道一位老师),每名学生在3个通道中可随机选择其中的一个通过.若甲、乙两名同学周一不同时进入校园,解决以下问题:(1)求甲周一进校园由王老师测体温的概率;(2)求甲、乙周一进校园分别由不同老师测体温的概率.3、若,求的值.4、如图,正方形网格中每个小正方形边长都是1,画出关于直线对称的.5、如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E,F为垂足.求证:DE=DF.6、一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?-参考答案-一、单选题1、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率利用概率公式直接计算即可得到答案.【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.2、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.3、A【分析】根据分式的分母不为零、二次根式的被开方数是非负数列出关于的不等式组,然后求得的取值范围.【详解】解:根据题意,得解之得:,故选:A.【点睛】本题综合考查了分式有意义的条件、二次根式有意义的条件,解答该题时,需要注意分式的分母不为零这一条件.4、B【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一分析即可.【详解】解:选项A中的图形是轴对称图形,故A不符合题意;选项B中的图形不是轴对称图形,故B符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.5、C【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5是常量,、是变量,据此判断即可.【详解】解:一本笔记本5元,买本共付元,则5是常量,、是变量.故选:C.【点睛】此题主要考查了常量与变量问题,解题的关键是要明确:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.6、C【分析】根据从A地向B地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元列出关系式即可.【详解】解:设通话时间t分钟(t≥3),由题意得:y=2.4+(t-3)=t-0.6(t≥3),故选C.【点睛】本题主要考查了根据实际问题列出关系式,解题的关键在于能够准确找到相应的关系.7、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A.【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.8、D【分析】根据单价乘以数量等于总价,剩余的钱等于所带的钱数减去购买笔记本用去的钱数即可.【详解】解:由剩余的钱数=带的钱数400﹣购买笔记本用去的钱数可得,y=400﹣12x,故选:D.【点睛】本题考查函数关系式,理解“单价、数量与总价”以及“剩余钱数、用去的钱数与总钱数”之间的关系是得出答案的前提.9、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.10、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点到直线的距离,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.二、填空题1、【分析】根据概率公式可直接进行求解.【详解】解:由题意得:随机摸出一球是白球的概率为;故答案为.【点睛】本题主要考查概率,熟练掌握概率的求解公式是解题的关键.2、2【分析】先对x=3做一个判断,再选择函数解析式,进而代入即可求解.【详解】解:当输入x=3时,因为x>1,所以y=-x+5=-3+5=2.故答案为:2.【点睛】本题实质上是考查了分段函数,应根据x的范围来判断将x=3代入哪一个式子.3、(答案不唯一)【分析】在与中,已经有条件:所以补充可以利用证明两个三角形全等.【详解】解:在与中,所以补充:故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.4、18【分析】连接B′B,并延长交C′A′于点D,交AC于点E,再根据对称的性质可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】解:连接B′B,并延长交C′A′于点D,交AC于点E,如图,∵点B关于AC的对称点是B',∴EB′=EB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.5、【分析】观察表格中的数据可得:各个式子的分子是输入的数字,分母是输入数字的3倍减1,据此解答即可.【详解】解:因为各个式子的分子是输入的数字,分母是输入数字的3倍减1,所以当输入数据是正整数n时,输出的数据是:.故答案为:.【点睛】本题考查了利用表格表示变量之间的关系和数据规律的探求,分别找出式子的分子与分母的规律是解本题的关键.6、±1【分析】根据完全平方公式a2±2ab+b2=(a±b)2求出m的值.【详解】解:∵x2±4x+4=(x±2)2,x2+4mx+4是完全平方式,∴±4x=4mx,∴m=±1.故答案为:±1.【点睛】本题考查了完全平方式,掌握a2±2ab+b2=(a±b)2的熟练应用,两种情况是求m值得关键.7、【分析】根据概率公式直接求解即可.【详解】解:∵﹣1,0,2和3中有2个正数,∴选到正数的概率=,故答案是:.故答案是:.【点睛】本题主要考查等可能事件的概率,熟练掌握概率公式是解题的关键.8、【分析】作,且,连接交于M,连接,证明,得到,,当F为与的交点时,即可求出最小值;【详解】解:如图1,作,且,连接交于M,连接,是等腰三角形,,,,,,,,在与中,,,∴当F为与的交点时,如图2,的值最小,此时,,故答案为:.【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键.9、6126【分析】根据同位角、同旁内角和内错角的定义判断即可;【详解】如图所示:同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;同旁内角有:与;与;与;与;与;与,共有6对;内错角有:与;与;与;与;与;与,共有6对;故答案是:6;12;6.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.10、3【分析】根据轴对称图形的定义:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,做答即可.【详解】解:如图所示,根据轴对称图形的定义可知,选择一个小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置可以有以下3种可能:故答案为:3.【点睛】本题考查轴对称图形,解题的关键是熟知轴对称的概念.三、解答题1、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.2、(1);(2)【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有三位老师测体温,分别是王老师、张老师、李老师所以由王老师测体温的概率是;(2)设王老师、张老师、李老师分别用A,B,C表示,画树状图如下:共有9种等可能的情况,其中都是甲、乙分别由不同老师测体温的有6种情况,所以,甲、乙分别由不同老师测体温的概率为=.【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3、25【分析】首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.【详解】解:∵,∴x2−2x+1+y2+6y+9=0,∴(x−1)2+(y+3)2=0,∴x−1=0,y+3=0,∴x=1,y=−3,∴(2x−y)2=(2+3)2=25.【点睛】此题主要考查了配方法的运用,非负数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论