




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北石家庄市42中7年级下册数学期末考试章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列事件为必然事件的是()A.打开电视,正在播放广告B.抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉2、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个 B.2个 C.3个 D.4个3、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°4、下列长度的各组线段中,能组成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,55、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B.任意写一个整数,它能被2整除C.掷一枚正六面体的骰子,出现1点朝上D.先后两次掷一枚质地均匀的硬币,两次都出现反面6、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定7、下列四个标志中,是轴对称图形的是()A. B. C. D.8、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1 B. C.∠2 D.9、下列在线学习平台的图标中,是轴对称图形的是()A. B. C. D.10、已知A=,B是多项式,在计算B-A时,小海同学把B-A错看成了B÷A,结果得,那么B-A的正确结果为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.2、已知盒子里有6个黑色球和n个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是,则n是______.3、用每片长6cm的纸条,重叠1cm粘贴成一条纸带,如图.纸带的长度y(cm)与纸片的张数x之间的函数关系式是___________________4、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.5、为了吸引游客,某景区在端午节期间开展门票打折优惠活动,原价80元的门票打八折销售,设节日期间共接待游客x人,减少的门票收入为y(元),则y与x之间的关系可表示为____.6、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是_________;(2)无人机在75米高的上空停留的时间是_________分钟;(3)在上升或下降过程中,无人机的速度为_________米/分;(4)图中a表示的数是_________;b表示的数是_________;(5)图中点A表示_________.7、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于_______8、将代数式化为只含有正整数指数幂的形式_______9、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.10、如图,与关于直线对称,则∠B的度数为________°.三、解答题(6小题,每小题10分,共计60分)1、计算:2、如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.3、某城市居民用水实行阶梯收费每户每月用水量如果未超过20t,按每吨2.5元收费.如果超过20t,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.设某户每月用水量为xt,应收水费为y元.(1)分别写出每月用水量未超过20t和超过20t时y与x间的关系式.(2)若该城市某户4月份水费平均为每吨2.8元,求该户4月份用水多少吨?4、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.5、如图,OC是∠AOB的平分线,且∠AOD=90°,∠COD=27°.求∠BOD的度数.6、(1)已知:如图(甲),等腰三角形的一个内角为锐角,腰为a,求作这个等腰三角形;(2)在(1)中,把锐角变成钝角,其他条件不变,求作这个等腰三角形.-参考答案-一、单选题1、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可.【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.2、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.3、C【分析】如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.4、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D能构成三角形;故选D.【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.5、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案.【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率≈0.33,符合题意;B、任意写一个整数,它能2被整除的概率为,不符合题意;C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为≈0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意;故选:A.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6、B【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.7、D【分析】利用轴对称图形的定义进行解答即可.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.8、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3,∴∠3=,∴∠2的余角为,故选B.【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.9、B【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、A【分析】先根据题意得到,从而求出B,再根据整式的加减计算法则求出B-A即可.【详解】解:由题意得:,∴,∴,故选A.【点睛】本题主要考查了单项式乘以多项式,整式的加减计算,熟知相关计算法则是解题的关键.二、填空题1、34°【分析】根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.【详解】解:平分,又故答案为【点睛】本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.2、6【分析】根据概率公式计算即可;【详解】由题可得,取出红色球的概率是,∴,∴,经检验,是方程的解;故答案是:6.【点睛】本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.3、y=5x+1.【分析】根据粘合后的总长度=x张纸条的长-(x-1)个粘合部分的长,列出函数解析式即可.【详解】纸带的长度y(cm)与纸片的张数x之间的函数关系式是y=6x−(x−1)=5x+1,故答案为y=5x+1.【点睛】此题考查函数关系式,解题关键在于根据题意列出方程.4、40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.5、【分析】用按原价销售的门票收入减去打折后的门票收入即可求得减少的门票收入.【详解】解:根据题意得:y=80x-80×80%×x,即y=16x.故答案为:y=16x.【点睛】本题考查了用关系式表示变量之间的关系,解题的关键是用按原价销售的门票收入减去打折后的门票收入即可求得减少的门票收入.6、操控无人机的时间;无人机的飞行高度;5;25;2;15;在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留时间为分钟即可;(3)根据“速度=路程÷时间”计算即可;(4)根据速速、时间与路程的关系式,列式计算求解即可;(5)根据点的实际意义解答即可.【详解】解:(1)横轴代表的是无人机被操控的时间,纵轴是无人机飞行的高度,所以自变量是操控无人机的时间;因变量是无人机的飞行高度;(2)无人机在75米高的上空停留时间为分钟;(3)在上升或下降过程中,无人机的速度为:米/分;(4)图中表示的数为:分钟;图中表示的数为分钟;(5)图中点A表示,在第6分钟时,无人机的飞行高度为50米.【点睛】本题考查变量之间的关系在实际中的应用,根据图象学会分析是解题重点.7、15【分析】连接DF,根据AE=ED,BD=3DC,可得,,,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF,∵AE=ED,∴,,∵BD=3DC,∴,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴,解得:.故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到,,,是解题的关键.8、【分析】先根据负整数指数幂的定义将分子分母中的负整数指数幂化成正整数指数幂,再计算除法运算即可得.【详解】解:原式,故答案为:.【点睛】本题考查了负整数指数幂,熟记负整数指数幂的定义(任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(为正整数))是解题关键.9、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.10、105°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°−35°−40°=105°.故答案为:105°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.三、解答题1、0【分析】由负整数指数幂、零指数幂、绝对值、乘方的运算法则进行化简,然后计算加减,即可得到答案.【详解】解:===0;【点睛】本题考查了负整数指数幂、零指数幂、绝对值、乘方的运算法则,解题的关键是掌握运算法则,正确的进行化简.2、(1)∠BOC=60°(2)见解析【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.3、(1)当时,,当时,;(2)该户4月份用水32t.【分析】(1)未超过20吨时,水费y=2.5×相应吨数;超过20吨时,水费y=2.5×20+超过20吨的吨数×3.3;(2)先由某户4月份水费平均为每吨2.8元,判断出该户4月份用水超过了20吨,再根据等量关系:用水吨数×2.8=2.5×20+超过20吨的吨数×3.3列出方程即可.【详解】解:(1)当时,,当时,,即.(2)该户4月份水费平均为每吨2.8元,该户4月份用水超过20吨.设该用户4月份用水a吨,得,解得.答:该户4月份用水32吨.【点睛】本题考查一次函数的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.4、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- SQ事业单位二零二五年度后勤维修工聘用合同
- 二零二五年度门卫工作日志及汇报合同
- 2025版爆破工程承包与安全教育培训合同
- 2025版节能工程项目设计施工总承包合同
- 2025年房屋租赁保险代理服务合同
- 2025年度网络广告投放与发布合同规范范本
- 2025版劳动和社会保障厅专项制农业劳动者服务合同书
- 2025年装配钳工(初级)考试试卷:装配钳工基本技能考核与评价
- 2025年通信工程师考试通信系统前沿技术探索试卷
- 2025年统计学期末考试题库-统计软件在环境科学中的应用试题
- 发电厂集控运行培训课件
- 血透电解质紊乱护理措施
- 健身课程合同范例
- 高中物理数学知识储备
- 2025年安徽省合肥市庐阳国投集团招聘工作人员30人历年自考难、易点模拟试卷(共500题附带答案详解)
- 稳重职称评定述职报告答辩模板
- 《资源整合与客户关系维护》课件
- 水中毒病理生理
- 医院安保服务投标方案医院保安服务投标方案(技术方案)
- 货车管理知识培训课件
- 未来产业的内涵、特征、难点及进路
评论
0/150
提交评论