2025年河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试试题(解析卷)_第1页
2025年河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试试题(解析卷)_第2页
2025年河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试试题(解析卷)_第3页
2025年河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试试题(解析卷)_第4页
2025年河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试试题(解析卷)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省义马市中考数学真题分类(丰富的图形世界)汇编同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为(

)A. B. C. D.2、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有6条棱,则该模型对应的立体图形可能是()A.四棱柱 B.三棱柱 C.四棱锥 D.三棱锥3、图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是(

)A. B. C. D.4、如图所示,正方体的展开图为(

)A. B.C. D.5、下列哪个图形是正方体的展开图(

)A. B.C. D.6、如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是(

)A. B. C. D.7、若一个棱柱有7个面,则它是(

)A.七棱柱 B.六棱柱 C.五棱柱 D.四棱柱8、直角三角板绕它的一条直角边旋转一周所形成的几何体是()A.棱锥 B.圆锥 C.棱柱 D.圆柱第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、对长方体如图所示那样截去一角后余下的几何体有________个顶点、_______条棱、_______个面.2、有一个正六面体骰子放在桌面上,将骰子沿如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2018次后,骰子朝下一面的数字是_____.3、下面几何体截面图形的形状是长方形的是_____________.(只填序号)4、如图所示的某种玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,如果喷涂1dm2需用油漆5g,那么喷涂这个玩具共需油漆_________g.5、如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.6、常见立体图形长方体、圆柱、圆锥、三棱锥中,侧面展开图是扇形的是_________.7、如图是一个正方体的平面展开图,其中每两个相对面上的数的和都相等,则A表示的数字为________.三、解答题(7小题,每小题10分,共计70分)1、将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形.(1)以下两个方格中的阴影部分,能表示立方体表面展开图的是____;(填“A”或“B”).(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相同的立方体表面展开图;(用阴影表示)(3)如图中实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)2、用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)

,各表示多少?(2)

可能是多少?这个几何体最少由几个小立方块搭成?最多呢?3、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44长方体8612正八面体812正十二面体201230你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.4、我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是_______.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有______(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.5、如图是一个包装纸盒的三视图(单位:cm).(1)该包装纸盒的几何形状是____;(2)画出该纸盒的平面展开图;(3)计算制作一个纸盒所需纸板的面积(精确到个位).6、如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.7、如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值是多少?-参考答案-一、单选题1、A【解析】【分析】由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.【详解】解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.【考点】本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.2、D【解析】【分析】根据三棱锥的特点,可得答案.【详解】侧面是三角形,说明它是棱锥,若是棱柱,则侧面应该是长方形,底面是三角形,说明它是三棱锥,且满足有6条棱的特点,故选:D.【考点】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.3、B【解析】【分析】观察长方体,可知第一部分所对应的几何体在长方体中,上面有二个正方体,下面有二个正方体,再在BC选项中根据图形作出判断.【详解】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.【考点】本题考查了认识立体图形,找到长方体中,第一部分所对应的几何体的形状是解题的关键.4、A【解析】【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【考点】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.5、B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【考点】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.6、A【解析】【分析】根据“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图,逐项判断即可求解.【详解】解:A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A【考点】本题主要考查了几何体的折叠和展开图形,熟练掌握“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图是解题的关键.7、C【解析】【分析】根据棱柱有两个底面求出侧面数,即可选择.【详解】棱柱必有两个底面,则剩下7-2=5个面是侧面,所以为五棱柱.故选C【考点】本题考查认识立体图形棱柱,解题的关键是知道棱柱必有两个底面.8、B【解析】【分析】根据面动成体,可得一个三角形绕直角边旋转一周可以得到一个圆锥.【详解】解:圆锥的轴截面是直角三角形,因而圆锥可以认为直角三角形以一条直角边所在的直线为轴旋转一周得到.故直角三角形绕它的直角边旋转一周可形成圆锥.故选:B.【考点】本题主要考查线动成面,面动成体的知识,学生应注意空间想象能力的培养.解决本题的关键是掌握各种面动成体的特征.二、填空题1、

7

12

7【解析】【分析】根据截一个立体图形的知识点判断即可;【详解】根据图形可得截去一角后余下的几何体有7个顶点、12条棱、7个面.故答案是:7,12,7.【考点】本题主要考查了截一个立体图形的知识点,准确计算是解题的关键.2、3.【解析】【分析】观察图形知道点数3和点数4相对,点数2和点数5相对,分别确定出前四次滚动后朝下的点数;根据题意可知四次一循环,接下来用2018除以4,根据余数即可确定答案.【详解】观察图形知道点数3和点数4相对,点数2和点数5相对,则点数1与点数6相对,且骰子朝下一面的点数是2,3,5,4依次循环,∵2018÷4=504……2,∴滚动第2018次后与第2次相同,∴朝下的点数为3.故答案为3.【考点】本题考查了探究规律,解题的关键是根据题意掌握循环的规律.3、(1)(4)【解析】【分析】根据立体几何的截面图形特征可直接进行求解.【详解】解:由图及题意可得:(1)是长方形,(2)是圆,(3)是梯形,(4)是长方形,(5)是平行四边形;∴几何体截面图形的形状是长方形的是(1)(4);故答案为(1)(4).【考点】本题主要考查立体几何的截面图形,熟练掌握立体几何图形的结构特征是解题的关键.4、140【解析】【分析】根据题意先求出玩具的表面积,然后再求需要的油漆质量.【详解】解:玩具的表面积为:6×(2×2)+4×(1×1)=28平方分米,所以喷涂这个玩具共需油漆28×5=140克.故答案为:140.【考点】本题主要考查了立体图形的视图问题.解题的关键是能把从不同的方向上看到的图形面积抽象出来(即利用视图的原理),从而求得总面积.5、路【解析】【分析】先由图1分析出:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2结合空间想象得出答案.【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”,所以第5格朝上的字是“路”.所以答案是路.【考点】本题考查了正方体的展开图,用空间想象去解决正方体的滚动是解题的关键.6、圆锥【解析】【分析】圆锥的侧面展开图是扇形.【详解】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故答案为:圆锥【考点】本题主要考察简单几何体的侧面展开图,解题时勿忘记圆锥的特征及圆锥展开图的情形.7、14【解析】【分析】利用正方形及其表面展开图的特点可知,-2与A,x+4与3x,3与所在的面为相对面,再根据在这个正方形中相对面上的数的和都相等,列出方程即可得出A所表示的数.【详解】这是一个正方体的平面展开图,共有六个面,其中-2与A,x+4与3x,3与所在的面为相对面,∵在这个正方形中相对面上的数的和都相等,∴-2+A=x+4+3x=3+,解得x=2,A=14.故答案为14.【考点】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题三、解答题1、(1)选“A”;(2)见解析;(3)见解析【解析】【分析】(1)有“田”字格的展开图都不能围成正方体,据此可排除B,从而得出答案;(2)可利用“1、4、1”作图(答案不唯一);(3)根据裁剪线裁剪,再展开.【详解】(1)两个方格图中的阴影部分能表示立方体表面展开图的是A,故答案为:A.(2)立方体表面展开图如图所示:(3)将其表面展开图画在方格图中如图所示:【考点】本题考查了几何体的展开图,熟记正方体的展开图的11结构种形式是解题的关键.2、(1),;(2)可能是或.【解析】【详解】试题分析:(1)利用从正面看得到的形状图,可以得到小正方体的层数,也就可以得到相应值.(2)因为y在中间,所以小于2层,值是1,或者2,然后分类讨论.试题解析:(1),.(2)可能是或,,.这个几何体最少由个立方体搭成,最多由个立方体搭成.点睛:一般先由各视图想象从各方向看到的几何体形状,然后综合起来确定几何体(或实物原型)的形状,再根据三个视图“长对正”,“高平齐”,“宽相等”确定轮廓线的位置,以及各个方向的尺寸.3、(1)填表见解析,V+F-E=2;(2)20;(3)14【解析】【分析】(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.【详解】解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230(2)由题意得:F-8+F-30=2,解得F=20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.【考点】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.4、(1)B;(2)①②③;(3)画出这个表面展开图见解析;外围周长为.【解析】【分析】(1)由平面图形的折叠及立体图形的表面展开图的特点解题;(2)由平面图形的折叠及立体图形的表面展开图的特点解题;(3)画出图象,根据外围周长的定义计算即可.【详解】(1)A折叠后不可以组成正方体;B折叠后可以组成正方体;C都是“2-4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;D折叠后不可以组成正方体;故答案为:B;(2)可能是该长方体表面展开图的有①②③.故答案为:①②③;(3)外围周长最大的表面展开图,如图:观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查了几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.5、(1)正六棱柱;(2)详见解析;(3)280(cm2)【解析】【分析】(1)易得此几何体为六棱柱;(2)利用(1)中所求得出该纸盒的平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论