强化训练-福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克试题(含答案及解析)_第1页
强化训练-福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克试题(含答案及解析)_第2页
强化训练-福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克试题(含答案及解析)_第3页
强化训练-福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克试题(含答案及解析)_第4页
强化训练-福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克试题(含答案及解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建泉州市永春第一中学7年级数学下册第一章整式的乘除专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是().A. B.C. D.2、若,,,则的值为()A. B. C.1 D.3、若,,则下列a,b,c的大小关系正确的()A. B. C. D.4、运用完全平方公式计算,则公式中的2ab是()A. B.﹣x C.x D.2x5、下列各式中,计算结果为x10的是()A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)26、下列运算正确的是()A.x2+x2=x4 B.2(a﹣1)=2a﹣1C.3a2•2a3=6a6 D.(x2y)3=x6y37、下列各式中,计算正确的是()A.(3a)2=3a2 B.-2(a-1)=-2a+1C.5a2-a2=4a2 D.4a2b-2ab2=2ab28、下列运算正确的是().A.a2•a3=a6 B.a3÷a=a3 C.(a2)3=a5 D.(3a2)2=9a49、小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是()A.(2a+b2) B.(a+2b) C.(3ab+2b2) D.(2ab+b2)10、下列计算正确的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、(x+2)(3x﹣5)=3x2﹣bx﹣10,则b=_____.2、若x2+2(m﹣3)x+16是完全平方式,则m的值等于______.3、计算:_______.4、若(x+2)(x+a)=x2+bx﹣8,则ab的值为_____.5、若是完全平方式,则k的值等于______.6、计算:|﹣2|﹣20210+()﹣1=______________.7、长方形的面积为,其中一边长是,则另一边长是_______.8、若am=10,an=6,则am+n=_____.9、若是一个完全平方式,则的值是___________.10、若,则______.三、解答题(6小题,每小题10分,共计60分)1、先化简,再求值:,其中,.2、先化简,再求值:,其中,.3、计算:(1);(2).4、已知,求得值.5、化简或计算下列各题(1);(2).6、将四个数a,b,c,d排列成2行,2列,记作,定义=ad-bc,上述记号就叫2阶行列式.(1)根据定义,化简;(2)请将(1)中的化简结果因式分解;(3)请直接写出(1)中化简结果有最值(填“大”或“小”),是.-参考答案-一、单选题1、C【分析】根据公式分别计算两个图形的面积,由此得到答案.【详解】解:正方形中阴影部分的面积为,平行四边形的面积为x(x+2a),由此得到一个x,a的恒等式是,故选:C.【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.2、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.【详解】解:∵,,∴==3÷8=,故选D.【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.3、C【分析】利用零次幂的含义求解的值,利用平方差公式求解的值,利用积的乘方的逆运算求解的值,再比较大小即可.【详解】解:而故选C【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算的值再比较大小是解本题的关键.4、C【分析】运用完全平方公式计算,然后和对比即可解答.【详解】解:对比可得-2ab=-x,则2ab=x.故选C.【点睛】本题主要考查了完全平方公式,理解完全平方公式的特征成为解答本题的关键.5、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A、x5+x5=2x5,故A不符合题意;B、x2•x5=x7,故B不符合题意;C、x20÷x2=x18,故C不符合题意;D、(x5)2=x10,故D符合题意;故选D.【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.6、D【分析】直接利用合并同类项,单项式乘单项式法则,同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【详解】解:A.x2+x2=2x2,故本选项错误;B.2(a﹣1)=2a﹣2,故本选项错误;C.3a2•2a3=6a5,故本选项错误;D.(x2y)3=x6y3,故本选项正确.故选:D.【点睛】此题主要考查了整式运算,正确掌握相关运算法则是解题关键.7、C【分析】分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.【详解】解:A、(3a)2=9a2,故选项错误,不符合题意;B、-2(a-1)=-2a+2,故选项错误,不符合题意;C、5a2-a2=4a2,故选项正确,符合题意;D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.故选:C.【点睛】此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.8、D【分析】分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可.【详解】解:A、a2•a3=a5a6,故本选项不合题意;B、a3÷a=a2a3,故本选项不合题意;C、(a2)3=a6a5,故本选项不合题意;D、(3a2)2=9a4,故本选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,掌握运算法则正确计算是本题的解题关键.9、A【分析】根据多项式除单项式的运算法则计算即可.【详解】∵(4a2b+2ab3)÷2ab=2a+b2,∴被墨汁遮住的一项是2a+b2.故选:A.【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.10、D【分析】利用同底数幂相乘的法则,积的乘方的法则,幂的乘法的法则,同底数幂相除的法则,对各项进行运算即可.【详解】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意;故选:D.【点睛】本题主要考查整式的运算,掌握幂的运算法则是解答本题的关键.二、填空题1、-1【分析】根据多项式乘多项式展开即可得到b的值.【详解】解:(x+2)(3x-5)=3x2+6x-5x-10=3x2+x-10,∵(x+2)(3x﹣5)=3x2﹣bx﹣10,∴3x2+x-10=3x2﹣bx﹣10,∴-b=1,∴b=-1,故答案为:-1.【点睛】本题考查了多项式乘多项式.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.2、7【分析】根据已知完全平方式得出2(m-3)x=±2•x•4,求出即可.【详解】解:∵x2+2(m-3)x+16是完全平方式,∴2(m-3)x=±2•x•4,解得:m=7或-1,故答案为:7或-1.【点睛】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.3、故答案为:1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的法则及整体代入思想的运用.4.【分析】由积的乘方的逆运算进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算.4、【分析】先计算等号左边,再根据等式求出a、b的值,最后代入求出ab的值.【详解】解:∵(x+2)(x+a)=x2+(2+a)x+2a,又∵(x+2)(x+a)=x2+bx﹣8,∴x2+(2+a)x+2a=x2+bx﹣8.∴2+a=b,2a=﹣8.∴a=﹣4,b=﹣2.∴ab=(﹣4)﹣2==.故答案为:.【点睛】本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a、b的值是解决本题的关键.5、【分析】这里首末两项是和这两个数的平方,那么中间一项为加上或减去和积的2倍.【详解】解:,,,故答案为:.【点睛】本题主要考查了完全平方公式的应用,解题的关键是两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.6、3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+()﹣1=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.7、【分析】根据长方形的面积公式列式即可求解.【详解】依题意可得另一边长是÷=故答案为:.【点睛】此题主要考查整式的除法,解题的关键是根据题意列式,根据整式的除法运算法则求解.8、60【分析】逆用同底数幂乘法法则即可解题.【详解】解:am+n=am·an=106=60.故答案为:60.【点睛】本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.9、±4【分析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵是一个完全平方式,∴故答案为:【点睛】本题考查了完全平方式的应用,两数的平方和,再加上或减去他们乘积的倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.10、##【分析】直接利用零指数幂的底数不为0可得出答案.【详解】解:∵(2x﹣1)0=1,∴2x﹣1≠0,解得:x≠.故答案为:.【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.三、解答题1、【分析】先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.【详解】解:当,时,原式.【点睛】本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.2、,【分析】先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.【详解】解:原式,将,代入得:.【点睛】本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.3、(1)(2)【分析】(1)先计算乘方,再计算除法,最后合并,即可求解;(2)先算乘方,再算除法,即可求解.(1)解:原式;(2)原式.【点睛】本题主要考查了幂的混合运算,多项式除以单项式,熟练掌握幂的混合运算法则,多项式除以单项式法则是解题的关键.4、16【分析】由同底数幂乘法的逆运算进行化简,然后把代入计算,即可得到答案.【详解】解:,∵,∴.【点睛】本题考查了同底数幂乘法的逆运算,解题的关键是掌握运算法则,正确的进行化简.5、(1);(2)【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值;(2)利用多项式乘多项式,再合并即可.【详解】解:(1)===;(2)==.【点睛】本题考查了整式的混合运算,熟练

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论