




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
KnowledgeDistillationandDatasetDistillationof
LargeLanguageModels:EmergingTrends,Challenges,
andFutureDirections
arXiv:2504.14772v1[cs.CL]20Apr2025
LuyangFang*1,XiaoweiYu*2,JiazhangCai1,YongkaiChen3,ShushanWu1,
ZhengliangLiu4,ZhenyuanYang4,HaoranLu1,XilinGong1,YufangLiu1,
TerryMa5,WeiRuan4,AliAbbasi6,JingZhang2,TaoWang1,EhsanLatif7,
WeiLiu8,WeiZhang9,SoheilKolouri6,XiaomingZhai7,DajiangZhu2,
WenxuanZhongt1,TianmingLiut4,andPingMat1
1DepartmentofStatistics,UniversityofGeorgia,GA,USA
2DepartmentofComputerScienceandEngineering,TheUniversityofTexasatArlington,TX,USA
3DepartmentofStatistics,HarvardUniversity,MA,USA
4SchoolofComputing,UniversityofGeorgia,GA,USA
5SchoolofComputerScience,CarnegieMellonUniversity,PA,USA
6DepartmentofComputerScience,VanderbiltUniversity,TN,USA
7AI4STEMEducationCenter,UniversityofGeorgia,GA,USA
8DepartmentofRadiationOncology,MayoClinicArizona,AZ,USA
9SchoolofComputerandCyberSciences,AugustaUniversity,GA,USA
April22,2025
Abstract
TheexponentialgrowthofLargeLanguageModels(LLMs)continuestohighlighttheneedforefficientstrategiestomeetever-expandingcomputationalanddatade-mands.Thissurveyprovidesacomprehensiveanalysisoftwocomplementaryparadigms:
KnowledgeDistillation(KD)andDatasetDistillation(DD),bothaimedatcompress-ingLLMswhilepreservingtheiradvancedreasoningcapabilitiesandlinguisticdiversity.
WefirstexaminekeymethodologiesinKD,suchastask-specificalignment,rationale-basedtraining,andmulti-teacherframeworks,alongsideDDtechniquesthatsynthesize
*Co-firstauthors.
tCo-correspondingauthors.{pingma;tliu;wenxuan}@
2
compact,high-impactdatasetsthroughoptimization-basedgradientmatching,latentspaceregularization,andgenerativesynthesis.Buildingonthesefoundations,weex-plorehowintegratingKDandDDcanproducemoreeffectiveandscalablecompressionstrategies.Together,theseapproachesaddresspersistentchallengesinmodelscalabil-ity,architecturalheterogeneity,andthepreservationofemergentLLMabilities.
Wefurtherhighlightapplicationsacrossdomainssuchashealthcareandeducation,wheredistillationenablesefficientdeploymentwithoutsacrificingperformance.Despitesubstantialprogress,openchallengesremaininpreservingemergentreasoningandlin-guisticdiversity,enablingefficientadaptationtocontinuallyevolvingteachermodelsanddatasets,andestablishingcomprehensiveevaluationprotocols.Bysynthesizingmethodologicalinnovations,theoreticalfoundations,andpracticalinsights,oursurveychartsapathtowardsustainable,resource-efficientLLMsthroughthetighterintegra-tionofKDandDDprinciples.
Keywords:LargeLanguageModels,KnowledgeDistillation,DatasetDistillation,Efficiency,ModelCompression,Survey
1Introduction
TheemergenceofLargeLanguageModels(LLMs)likeGPT-4(
Brownetal.
,
2020
),DeepSeek(
Guoetal.
,
2025
),andLLaMA(
Touvronetal.
,
2023
)hastransformednaturallanguageprocessing,enablingunprecedentedcapabilitiesintasksliketranslation,reasoning,andtextgeneration.Despitetheselandmarkachievements,theseadvancementscomewithsignificantchallengesthathindertheirpracticaldeployment.First,LLMsdemandimmensecomputa-tionalresources,oftenrequiringthousandsofGPUhoursfortrainingandinference,whichtranslatestohighenergyconsumptionandenvironmentalcosts.Second,theirrelianceonmassivetrainingdatasetsraisesconcernsaboutdataefficiency,quality,andsustainability,aspubliccorporabecomeoverutilizedandmaintainingdiverse,high-qualitydatabecomesincreasinglydifficult(
Hadietal.
,
2023
).Additionally,LLMsexhibitemergentabilities,suchaschain-of-thoughtreasoning(
Weietal.
,
2022
),whicharechallengingtoreplicateinsmallermodelswithoutsophisticatedknowledgetransfertechniques.
Tosurmountthesechallenges,distillationhasemergedasapivotalstrategy,integratingKnowledgeDistillation(KD)(
Hintonetal.
,
2015
)andDatasetDistillation(DD)(
Wang
etal.
,
2018
),totacklebothmodelcompressionanddataefficiency.Crucially,thesuccessofKDinLLMshingesonDDtechniques,whichenablethecreationofcompact,information-richsyntheticdatasetsthatencapsulatethediverseandcomplexknowledgeoftheteacherLLMs.
KDtransfersknowledgefromalarge,pre-trainedteachermodeltoasmaller,moreef-ficientstudentmodelbyaligningoutputsorintermediaterepresentations.Whileeffective
3
formoderate-scaleteachermodels,traditionalKDstruggleswithLLMsduetotheirvastscale,whereknowledgeisdistributedacrossbillionsofparametersandintricateattentionpatterns.Moreover,theknowledgeisnotlimitedtooutputdistributionsorintermediaterep-resentationsbutalsoincludeshigher-ordercapabilitiessuchasreasoningabilityandcomplexproblem-solvingskills(
WilkinsandRodriguez
,
2024
;
Zhaoetal.
,
2023
;
Latifetal.
,
2024
).DDaimstocondenselargetrainingdatasetsintocompactsyntheticdatasetsthatretaintheessentialinformationrequiredtotrainmodelsefficiently.RecentworkhasshownthatDDcansignificantlyreducethecomputationalburdenofLLMtrainingwhilemaintainingperformance.Forexample,DDcandistillmillionsoftrainingsamplesintoafewhundredsyntheticexamplesthatpreservetask-specificknowledge(
Cazenavetteetal.
,
2022
;
Maekawa
etal.
,
2024
).WhenappliedtoLLMs,DDactsasacriticalenablerforKD:itidentifieshigh-impacttrainingexamplesthatreflecttheteacher’sreasoningprocesses,therebyguidingthestudenttolearnefficientlywithoutoverfittingtoredundantdata(
Sorscheretal.
,
2022
).
ThescaleofLLMsintroducesdualchallenges:relianceonunsustainablemassivedatasets(
Hadietal.
,
2023
)andemergentabilities(e.g.,chain-of-thoughtreasoning(
Weietal.
,
2022
))requiringprecisetransfer.ThesechallengesnecessitateadualfocusonKDandDD.WhileKDcompressesLLMsbytransferringknowledgetosmallermodels,traditionalKDalonecannotaddressthedataefficiencycrisis:trainingnewerLLMsonredundantorlow-qualitydatayieldsdiminishingreturns(
Albalaketal.
,
2024
).DDcomplementsKDbycuratingcom-pact,high-fidelitydatasets(e.g.,rarereasoningpatterns(
Lietal.
,
2024
)),asdemonstratedinLIMA,where1,000examplesachievedteacher-levelperformance(
Zhouetal.
,
2023
).ThissynergyleveragesKD’sabilitytotransferlearnedrepresentationsandDD’scapacitytogen-eratetask-specificsyntheticdatathatmirrorstheteacher’sdecisionboundaries.Together,theyaddressprivacyconcerns,computationaloverhead,anddatascarcity,enablingsmallermodelstoretainboththeefficiencyofdistillationandthecriticalcapabilitiesoftheirlargercounterparts.
ThissurveycomprehensivelyexaminesKDandDDtechniquesforLLMs,followedbyadiscussionoftheirintegration.TraditionalKDtransfersknowledgefromlargeteachermod-elstocompactstudents,butmodernLLMs’unprecedentedscaleintroduceschallengeslikecapturingemergentcapabilitiesandpreservingembeddedknowledge.DDaddressesthesechallengesbysynthesizingsmaller,high-impactdatasetsthatretainlinguistic,semantic,andreasoningdiversityforeffectivetraining.OuranalysisprioritizesstandaloneadvancementsinKDandDDwhileexploringtheircombinedpotentialtoenhancemodelcompression,trainingefficiency,andresource-awaredeployment.Thissurveyunderscorestheircollective
4
roleinovercomingscalability,datascarcity,andcomputationalbarriers.
Thesubsequentsectionsexplorethefollowingkeyaspects:
•FundamentalsofKDandDD(Section
2
),distinguishingtheirrolesincompressingLLMsandoptimizingtrainingefficiency.
•MethodologiesforKDinLLMs(Section
3
),includingrationale-baseddistillation,uncertainty-awareapproaches,multi-teacherframeworks,dynamic/adaptivestrategies,andtask-specificdistillation.Additionally,wereviewtheoreticalstudiesthatofferdeeperinsightsintotheunderlyingprinciplesofKD.
•MethodologiesforDDinLLMs(Section
4
),coveringoptimization-baseddistillation,syntheticdatageneration,andcomplementarydataselectionstrategiesforcompacttrainingdata.
•IntegrationofKDandDD(Section
5
),presentingunifiedframeworksthatcombineKDandDDstrategiesforenhancingLLMs.
•Evaluationmetrics(Section
6
)forassessingtheeffectivenessofdistillationinLLMs,focusingonperformanceretention,computationalefficiency,androbustness.
•Applicationsacrossmultipledomains(Section
7
),includingmedicalandhealth,edu-cation,andbioinformatics,demonstratingthepracticalbenefitsofdistillationinreal-worldscenarios.
•Challengesandfuturedirections(Section
8
),identifyingkeyareasforimprovement.ThetaxonomyofthissurveyisillustratedinFigure
1
.
2FundamentalsofDistillation
ThissectionintroducesthedefinitionandcoreconceptsofKnowledgeDistillation(KD)andDatasetDistillation(DD).Additionally,itdiscussesthesignificanceofdistillationinLLMscomparedtotraditionaldistillationmethods.
5
Rationale-BasedKD
(Hsiehetal.,2023),(Chuetal.,2023),(Wangetal.,2023),(Fengetal.,2024)
(KPOD)
Uncertainty&BayesianKD
(KorattikaraBalanetal.,2015),(Vaderaetal.,2020),(Malininetal.,2019),(Menon
etal.,2021),(Fangetal.,2024)
(Youetal.,2017),(Zhangetal.,2022),(Duetal.,2020),(Fukudaetal.,2017),(Zhu
Multi-Teacher&EnsembleKD
etal.,2021),(Tianetal.,2024)(TinyLLM),(Khanujaetal.,2021)
(MERGEDISTILL),(Liuetal.,2024)(DIVERSEDISTILL),(Wadhwaetal.,2025)
MethodologiesforKDinLLMs
Dynamic&AdaptiveKD
(NiandHu,2023),(Changetal.,2022),(NiyazandBathula,2022),(Sunetal.,2021),(Li
etal.,2024)(BiLD),(Lietal.,2023),(Linetal.,2020)(Ensemblecontext)
(Wuetal.,2023)(LAMINI),(Yangetal.,2023),(Zhangetal.,2023),(Taorietal.,2023a)(Alpaca),(Wei
Task-SpecificKD
etal.,2021)(FLAN),(Thoppilanetal.,2022),(Brownetal.,2020),(Zhangetal.,2023),(Wangetal.,2022),
(Ouyangetal.,2022),(Liuetal.,2024),(Austinetal.,2021),(Chenetal.,2021),(Fangetal.,2025)(Task
synergy)
TheoreticalStudies
(Wuetal.,2023;Yangetal.,2023;Zhangetal.,2023),Taorietal.(2023a),Weietal.(2021),
(Zhangetal.,2023;Wangetal.,2022;Ouyangetal.,2022)
(Wangetal.,2018),(Zhaoetal.,2020),(ZhaoandBilen,2021),(Cazenavette
Optimization-BasedDD
etal.,2022),(Kimetal.,2022a),(Nguyenetal.,2021),(Looetal.,2022),
(Zhouetal.,2022)
SyntheticDataGeneration
Filtering
MethodologiesforDDinLLMs
(Cazenavetteetal.,2023)(GLaD),(Liuetal.,2022)(HaBa),(Leeetal.,2022)(KFS)
DistillationinLLMs
(Albalaketal.,2024),(Abbasetal.,2023),(Penedoetal.,2023),(Raeetal.,
2021),(Yaoetal.,2020),(Wenzeketal.,2020)
DataSelectionCoreset
(Zhangetal.,2024),(Liu,Zeng,He,Jiang,andHe,Liuetal.),(Xiaetal.,
2024),(Zhang,Zhai,Ma,Shen,Li,Jiang,andLiu,Zhangetal.)
DataAttribution
(GhorbaniandZou,2019),(Wangetal.,2025),(Wangetal.,2024),(Wang
etal.,2025)
KnowledgeTransferviaDatasetDistillation
(Yinetal.,2023),(Shaoetal.,2024),(Sunetal.,2024),(YinandShen,
IntegrationofKnowledgeDistillation
&DatasetDistillation
2023),(XiaoandHe,2024)
(Wangetal.,2022)(PromDA),(Heetal.,2022)(GAL),(Dengetal.,2022),
Prompt-BasedSyntheticDataGeneration
(Pryzantetal.,2023)(ProTeGi),(Zhouetal.,2024)(DiffLM),(DeSalvo
etal.,2024)(SoftSRV)
(Pillutlaetal.,2021),(Zhangetal.,2019),(Cobbeetal.,2021),(Hendrycks
EvaluationandMetrics
etal.,2021),(Liuetal.,2020),(Minetal.,2023),(Changetal.,2024),(Wang
etal.,2023),(Wangetal.,2021),(Zhuetal.,2023),(Guoetal.,2017),(Tian
etal.,2023),(Leeetal.,2025)
(Niuetal.,2024)(ClinRaGen),(Tariqetal.,2024),(Nievasetal.,2024)(Trial-LLAMA),(Zhangetal.,2025)(KEDRec-LM),(Dingetal.,2024),
Medical&Healthcare(Hasanetal.,2024),(Nievasetal.,2024),(Sutantoetal.,2024),(Yagnik
etal.,2024),(Guetal.,2023),(Vedulaetal.,2024),(Zhangetal.,2025),(Ge
etal.,2025),
Applications
(Zhai,2022),(Selwyn,2019),(Danetal.,2023),(Xieetal.,2023),(Xieetal.,2024),
Education&E-Learning(Dagdelenetal.,2024),(Latifetal.,2024),(Jiaoetal.,2019)(TinyBERT),(Quetal.,2024),(Baladónetal.,2023),(Fangetal.,2025)
Bioinformatics
(Shangetal.,2024),(Zhouetal.,2024)(DEGU),(Luetal.,2023),(Zhou
etal.,2021)
Figure1:TaxonomyofDistillationofLargeLanguageModels.
2.1KnowledgeDistillation
2.1.1DefinitionandCoreConcepts
KDisamodelcompressionparadigmthattransfersknowledgefromacomputationallyinten-siveteachermodelfTtoacompactstudentmodelfS.Formally,KDtrainsfStoapproximateboththeoutputbehaviorandintermediaterepresentationsoffT.Thefoundationalworkof
Hintonetal.
(
2015
)introducedtheconceptof“softlabels”:insteadoftrainingonhardlabelsy,thestudentlearnsfromtheteacher’sclassprobabilitydistributionpT=σ(zT/τ),wherezTarelogitsfromfT,σisthesoftmaxfunction,andτisatemperatureparameterthatcontrolsdistributionsmoothness.Thestudent’sobjectivecombinesacross-entropyloss
6
LCE(forhardlabels)andadistillationlossLKL:
LKD=α·LCE(σ(zS(x)),y)+(1—α)·τ2·LKL(σ(zT(x)/τ),σ(zS(x)/τ)),(1)
whereLKListheKullback-Leibler(KL)divergencebetweenstudentandteachersoftenedoutputs,andαbalancesthetwoterms.Beyondlogits,laterworksgeneralizedKDtotransferhiddenstateactivations(
Romeroetal.
,
2014
),intermediatelayers(
Sunetal.
,
2019
),atten-tionmatrices(
Jiaoetal.
,
2019
),orrelationalknowledge(
Parketal.
,
2019
),formalizedasminimizingdistancemetrics(e.g.,ⅡhT—hSⅡ2)betweenteacherandstudentrepresentations.Thisframeworkenablesthestudenttoinheritnotonlytask-specificaccuracybutalsotheteacher’sgeneralizationpatterns,makingKDacornerstoneforefficientmodeldeployment.
Figure2:OverviewofKnowledgeDistillationinLLMs.KnowledgeisdistilledfromateacherLLM,whichhasbeentrainedonalargeexistingdatabase.Thisknowledge,potentiallyenrichedwithcurrent,task-specificdata,istransferredtoasmallerstudentLLM.Bylearningfromboththeteacher’sguidanceandthecurrentdata,thestudentLLMbecomesmoreefficientandeffectiveatperformingdownstreamtasks.
2.1.2KDintheEraofLLMsvs.TraditionalModels
TheemergenceofLLMs,exemplifiedbymodelslikeGPT-3(175Bparameters(
Brownetal.
,
2020
)),hasnecessitatedrethinkingtraditionalKDparadigms.WhileclassicalKDusuallyfocusesoncompressingtask-specificmodels(e.g.,ResNet-50toMobileNet)withhomoge-neousarchitectures(
Gouetal.
,
2021
),LLM-drivendistillationconfrontsfourfundamentalshifts:
•Scale-DrivenShifts:TraditionalKDoperatesonstaticoutputdistributions(e.g.,classprobabilities),butautoregressiveLLMsgeneratesequentialtokendistributions
7
overvocabulariesof~50ktokens.Thisdemandsnoveldivergencemeasuresforsequence-levelknowledgetransfer(
Shridharetal.
,
2023
),suchastoken-levelKullback-Leiblerminimizationordynamictemperaturescaling.
•ArchitecturalHeterogeneity:TraditionalKDoftenassumedmatchedorcloselyrelatedteacher-studenttopologies(e.g.,bothCNNs).LLMdistillationoftenbridgesarchitecturallydistinctmodels(e.g.,sparseMixture-of-Expertsteacherstodensestu-dents(
Fedusetal.
,
2022
)).Thisrequireslayerremappingstrategies(
Jiaoetal.
,
2019
)andrepresentationalignment(e.g.,attentionheaddistillation(
Micheletal.
,
2019
))tobridgetopologicalgapswhilepreservinggenerativecoherence.
•KnowledgeLocalization:LLMsencodeknowledgeacrossdeeplayerstacksandmulti-headattentionmechanisms,necessitatingdistillationstrategiesthataddress:
–Structuralpatterns:Attentionheadsignificance(
Micheletal.
,
2019
)andlayer-specificfunctionalroles(e.g.,syntaxvs.semantics).
–Reasoningtrajectories:ExplicitrationaleslikeChain-of-Thought(
Weietal.
,
2022
)andimplicitlatentstateprogressions.
Unliketraditionalmodeldistillation,whichoftenfocusesonreplicatinglocalizedfea-tures,LLMdistillationmustpreservecross-layerdependenciesthatencodelinguisticcoherenceandlogicalinference(
Sunetal.
,
2019
).
•DynamicAdaptation:LLMdistillationincreasinglyemploysiterativeprotocolswhereteachersevolveviareinforcementlearningfromhumanfeedback(RLHF)(
Ouyang
etal.
,
2022
)orsyntheticdataaugmentation(
Taorietal.
,
2023b
),divergingfromstaticteacherassumptionsinclassicalKD.
2.2DatasetDistillation
2.2.1OverviewofDatasetDistillation
Datasetdistillation(
Wangetal.
,
2018
)isatechniquedesignedtocondenseknowledgefromlargedatasetsintosignificantlysmaller,syntheticdatasetswhileretainingtheabilitytotrainmodelseffectively.Unlikedataselectionmethods(e.g.,datapruningorcoresetselec-tion(
Dasguptaetal.
,
2009
)),whichfocusonchoosingrepresentativerealsamples,dataset
8
distillationactivelysynthesizesnew,compactsamplesthatencapsulatetheessentiallearn-ingsignal.Thedistilleddatasetisoftenordersofmagnitudesmalleryetenablesmodelstoachievecomparableorevenimprovedperformance.
Formally,letD纟{(xi,yi)}|1bealargedataset,andDsyn纟i,i
datasetwithn≪|D|.ForalearningmodelΦ,letθDandθDsynbetheparameterslearnedfromtrainingonDandDsyn,respectively.DatasetdistillationaimstomakeθDandθDsynproducesimilaroutcomes:
a,n(x~,~Y{Il(ΦθD(x),y)-l(ΦθDsyn(x),y)I}).(2)
Anϵ-approximatedatasummarysatisfies:
x~,~Y{Il(ΦθD(x),y)-l(ΦθDsyn(x),y)I}≤ϵ.(3)
Figure3:OverviewofDatasetDistillationinLLMs.AteacherLLMistrainedonamassiveoriginaldatabase.Throughdatasetdistillation,acompact,high-qualitysubset(DistilledDatabase)issynthesizedtopreserveessentialknowledge.ThissmallerdatasetisthenusedtotrainastudentLLM,aimingtoachievesimilarperformanceastheteacherwhilerequiringsignificantlyfewerdata.
Withtheincreasingscaleofmoderndeeplearningmodels,datasetdistillationhasgainedattentionforacceleratingtraining(
Dingetal.
,
2024
),enablingcontinuallearning(
Deng
andRussakovsky
,
2022
),andimprovingdataefficiencyinlow-resourcesettings(
Songetal.
,
2023
).However,challengesremain,suchaspreservingsufficientdiversityandrobustnessinthedistilleddataandavoidingoverfitting(
Cazenavetteetal.
,
2023
).InLLMs,datasetdistillationiscrucialforreducingcomputationaloverheadwhilemaintainingtherichseman-
9
ticdiversityneededforeffectivelanguagemodeling.Table
1
outlinessomecommonlyuseddatasetsfordatadistillation.
Table1:CommonDatasetsforDataDistillation.
Dataset
Size
Category
RelatedWorks
SVHN
60K
Image
HaBa(
Liuetal.
,
2022
),FreD(
Shinetal.
,
2023
)
CIFAR-10
60K
Image
FreD(
Shinetal.
,
2023
),IDC(
Kimetal.
,
2022b
)
CIFAR-100
60K
Image
IDM(
Zhaoetal.
,
2023
),DD(
Wangetal.
,
2018
)
TinyImageNet
100K
Image
CMI(
Zhongetal.
,
2024
),DD(
Wangetal.
,
2018
)
ImageNet-1K
14000K
Image
Teddy(
Yuetal.
,
2024
),TESLA(
Cuietal.
,
2023
)
TDBench
23datasets
Table
TDColER(
Kangetal.
,
2025
)
SpeechCommands
8K
Audio
IDC(
Kimetal.
,
2022b
)
AMCAIMESTaR
4K
Text
Numinamath(
Lietal.
,
2024
)
R1-Distill-SFT
17K
Text
QWTHN(
Kongetal.
,
2025
)
OpenThoughts-114k
114K
Text
FreeEvalLM(
Zhaoetal.
,
2025
)
2.2.2MethodsandApproaches
Datasetdistillationhasevolvedthroughvariousmethodologicaladvancements,eachaimingtocompresslargedatasetsintosmallyethighlyinformativesubsets(
SachdevaandMcAuley
,
2023
;
YinandShen
,
2024
;
Yuetal.
,
2023
).Fromahigh-levelperspective,twomaincategoriescanbedistinguished:optimization-baseddatasetdistillationandsyntheticdatagenerationfordatasetdistillation.
Optimization-BasedMethods.Thesemethodsdistilldatasetsbyaligningtrainingdy-namics(e.g.,gradients,trajectories)orfinalmodelperformancebetweensyntheticandorig-inaldata.
•Meta-LearningOptimization:Abi-leveloptimizationapproachthattrainsamodelonasyntheticdatasetandevaluatesitsperformanceontheoriginaldataset.Thesyn-theticsamplesareiterativelyrefinedtomatchthemodel’sperformancewhentrainedonthefulldataset(
Wangetal.
,
2018
).
•GradientMatching:Proposedby
Zhaoetal.
(
2020
),italignsthegradientsfromone-stepupdatesonrealvs.syntheticdatasets.Theobjectiveistomakegradientsconsistentsothattrainingonsyntheticdatacloselyresemblestrainingonrealdataovershorttimespans.
10
•TrajectoryMatching:Toaddressthelimitationofsingle-stepgradientmatch-ing,multi-stepparametermatching(a.k.a.trajectorymatching)wasintroducedby
Cazenavetteetal.
(
2022
).Italignstheendpointsoftrainingtrajectoriesovermultiplesteps,makingthedistilleddatasetmorerobustoverlongertraininghorizons.
SyntheticDataGeneration.Thesemethodsdirectlycreateartificialdatathatapprox-imatesthedistributionoftheoriginaldataset.TherepresentativetechniquehereisDis-tributionMatching(DM)(
ZhaoandBilen
,
2023
),aimingtogeneratesyntheticdatawhoseempiricaldistributionalignswiththerealdatasetusingmetricslikeMaximumMeanDis-crepancy(MMD).
2.2.3ApplicationsandUseCases
Datasetdistillationhaswide-rangingapplicationswheredataredundancymustbereducedwithoutsacrificingperformance:
•LLMFine-TuningandAdaptation:Bycreatingadistilledsubsetofdomain-specificdata,researcherscanrapidlyadaptlarge-scaleLLMstospecializedtaskswith-outincurringthefullcomputationalcost.
•Low-ResourceLearning:InfederatedlearningandedgeAIscenarios(
Wuetal.
,
2024
;
Quetal.
,
2025
),adistilleddatasetreducescommunicationandcomputationaloverhead.
•NeuralArchitectureSearchandHyperparameterTuning:Distilleddatasetsprovideaproxyforevaluatingmodelvariantsquickly,cuttingdownonexpensivefull-datasettraining(
Prabhakaretal.
,
2022
).
•PrivacyandSecurity:Distilleddatasetscanserveasprivacy-preservingproxiesforsensitivedata(e.g.,medicalorfinancialrecords),reducingexposureofindividual-levelinformation(
Yuetal.
,
2023
).
•ContinualLearning:Bysummarizingpasttasks,distilleddatasetshelpmitigatecatastrophicforgettingwhenmodelslearnincrementallyovertime(
Binicietal.
,
2022
).
11
3MethodologiesandTechniquesforKnowledgeDistilla-
tioninLLMs
Inthissection,wereviewmethodologiesforknowledgedistillation(KD)inLLMs,includ-ingrationale-basedapproaches,uncertainty-awaretechniques,multi-teacherframeworks,dy-namic/adaptivestrategies,andtask-specificdistillation.WealsoexploretheoreticalstudiesthatuncoverthefoundationalmechanismsdrivingKD’ssuccessinLLMs.
3.1Rationale-BasedKD
Rationale-BasedKnowledgeDistillation(RBKD)improvestraditionalknowledgedistillationbyallowingthestudentmodeltolearnnotonlytheteacher’sfinalpredictionsbutalsothereasoningprocessbehindthem,knownasChain-of-Thought(CoT)reasoning.Thismakesthestudentmodelmoreinterpretableandreducestheneedforlargeamountsoflabeleddata(
Hsiehetal.
,
2023
).Insteadofmerelyimitatingtheteacher’soutputs,thestudentdevelopsadeeperunderstandingofproblem-solving,leadingtobettergeneralizationandadaptabilitytonewtasks.
Formally,givenadatasetD={(xi,yi,ririistherationalegeneratedbytheteacher,thestudentistrainedtojointlypredictboththerationaleandthefinalanswer.Thisobjectivecanbeformulatedas:
wherePθdenotesthestudentmodelparameterizedbyθ.Thisformulationencouragesthestudenttointernalizethereasoningpathratherthanshortcuttingtotheanswer.
Byincorporatingreasoningsteps,RBKDenhancestransparency,makingmodelsmorereliableinfieldslikehealthcareandlaw,whereunderstandingdecisionsiscrucial.Italsoimprovesefficiency,assmallermodelscanachievestrongperformancewithoutrequiringextensivecomputationalresources.ThismakesRBKDapracticalapproachthatbalancesaccuracy,interpretability,andresourceefficiency(
Chuetal.
,
2023
).
OnepromisingdirectionisKeypoint-basedProgressiveCoTDistillation(KPOD),whichaddressesbothtokensignificanceandtheorderoflearning(
Fengetal.
,
2024
).InKPOD,thedifficultyofeachreasoningstepisquantifiedusingaweightedtokengenerationloss:
12
wheredk(i)isthedifficultyscoreofthek-thstepinthei-thrationale,pkandqkdenotethestartandendpositionsofthatstep,andj(i)representsthenormalizedimportanceweightfortokenj.Thisdifficulty-awaredesignallowsthestudentmodeltoacquirereasoningskillsprogressively—fromsimplertomorecomplexsteps—resultinginstrongergeneralizationandinteroperability.
ChallengesandFutureDirections.ThegrowingfocusondistillingricherknowledgefromteacherLLMs,suchasreasoningandotherhigher-ordercapabilities,raisesimportantquestionsaboutwhichknowledgetoextractandhowtoextractiteffectively.SincemanyteacherLLMsareclosed-source,capturingtheiradvancedcapabilitiesismorechallengingthanmerelycollectinghard-labelpredictions.ThishighlightstheneedforfurtherresearchintodiverseknowledgeextractionapproachesfromteacherLLMs,aimingtoenhancet
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关爱老人具体活动策划方案
- 服务型公司营销管理方案
- 药品安全宣传培训情况课件
- 薪酬改革方案咨询
- 管理咨询工资方案
- 吴忠聚脲地坪施工方案
- 初二政治考试题目及答案
- 摩登建筑婚礼策划方案设计
- 胃镜室护理工作制度
- 宠物店营销方案海报创意
- 研究生学术道德与学术规范课件
- 2023年安徽国贸集团控股有限公司招聘笔试模拟试题及答案解析
- 初中作文指导-景物描写(课件)
- 植物灰分的测定
- 实验室资质认证评审准则最新版本课件
- 浦发银行个人信用报告异议申请表
- 《横》书法教学课件
- 文件外发申请单
- 历史选择性必修1 国家制度与社会治理(思考点学思之窗问题探究)参考答案
- 中国医院质量安全管理 第2-29部分:患者服务临床营养 T∕CHAS 10-2-29-2020
- 人大附小诗词选修课:苏轼生平
评论
0/150
提交评论