




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市第十二中学7年级下册数学期末考试专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN.则∠NEM的度数为()A.105o B.C. D.不能确定2、三个数,,中,负数的个数是()A.0个 B.1个 C.2个 D.3个3、如图,点,,,在一条直线上,,,,,,则()A.4 B.5 C.6 D.74、如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=85°,∠B=25°,则∠BCD的大小为()A.150° B.140° C.130° D.120°5、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.6、下列图形中,不是轴对称图形的是().A. B. C. D.7、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)8、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是()温度/℃﹣20﹣100102030传播速度/(m/s)318324330336342348A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s9、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.610、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有3个,黄球1个,现从中任意摸出一个球是白球的概率是,那么袋中蓝球有_______个.2、若,,则________.3、计算:_______.4、如图,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面积为14,△ABD的面积为10,则△ABC的面积为______.5、平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是______.6、如果x2﹣mx+81是一个完全平方式,那么m的值为_____.7、如图,已知,CE平分,,则______°.8、如图,正三角形△ABC和△CDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有_____.(填序号)9、如图,是汽车加油站在加油过程中加油器仪表某一瞬间的显示,(其中数量用x升表示,金额用y元表示,单价用a元/升表示),结合图片信息,请用适当的方式表示加油过程中变量之间的关系为:___________.10、如果多项式是完全平方式,那么的值是____________.三、解答题(6小题,每小题10分,共计60分)1、问题情境:如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质,可得______.问题迁移:如图3,,点在射线上运动,,.(1)当点在、两点之间运动时,、、之间有何数量关系?请说明理由.(2)如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、之间有何数量关系.2、如图,点B,F,C,E在一条直线上,AB=DE,AC=DF,BF=EC.AB和DE的位置关系是什么?请说明你的理由.3、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?4、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则.(直接写出结果)5、如图,已知△ABC,按如下步骤作图:①以点A为圆心,AB长为半径画弧.②以点C为圆心,CB长为半径画弧,两弧相交于点D.③连结BD,与AC交于点E,连结AD,CD.求证:∠BAC=∠DAC.6、如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A,C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB边下方的点E处,记△ADE的周长为L,直接写出L的取值范围.-参考答案-一、单选题1、B【分析】由折叠的性质可得:再结合邻补角的含义可得答案.【详解】解:由折叠的性质可得:故选B【点睛】本题考查的是轴对称的性质,角平分线的含义,邻补角的含义,利用轴对称的性质证明是解本题的关键.2、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可.【详解】解:>0,>0,<0,负数的个数是1个,故选:B.【点睛】本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键.3、A【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,,∴,∴,∵,∴;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.4、B【分析】根据三角形内角和的性质可求得,再根据对称的性质可得,即可求解.【详解】解:根据三角形内角和的性质可求得由轴对称图形的性质可得,∴故选:B【点睛】此题考查了三角形内角和的性质,轴对称图形的性质,解题的关键是掌握并利用相关基本性质进行求解.5、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.6、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键.7、B【详解】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.8、A【分析】根据所给表格,结合变量和自变量定义可得答案.【详解】解:A、自变量是温度,因变量是传播速度,故原题说法错误;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音10s可以传播3360m,故原题说法正确;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:A.【点睛】此题主要考查了常量与变量,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.9、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.10、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.【详解】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.二、填空题1、5【分析】根据题意易知不透明的口袋中球的总数为个,然后问题可求解.【详解】解:由题意得:不透明的口袋中球的总数为个,∴袋中蓝球有(个);故答案为5.【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.2、3【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.【详解】解:.故答案为:3.【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握是解题的关键.3、故答案为:1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的法则及整体代入思想的运用.4.【分析】由积的乘方的逆运算进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算.4、28【分析】延长BD交AC于点E,可得△ABD≌△AED,则△ABD与△AED的面积相等,点D是BE的中点,从而△CED与△CBD的面积相等,且可求得△CED的面积,进而求得结果.【详解】延长BD交AC于点E,如图所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD与△AED的面积相等,BD=ED∴点D是BE的中点∴△CED与△CBD的面积相等,且△CED的面积等于△ADC的面积与△ABD的面积的差,即为14-10=4∴△CBD的面积为4∴△ABC的面积=14+10+4=28故答案为:28【点睛】本题考查了全等三角形的判定与性质,三角形一边上的中线平分此三角形的面积等知识,关键是构造辅助线并证明△ABD≌△AED.5、【分析】根据关于x轴的对称点的坐标特征求解即可;【详解】解:根据关于x轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点关于轴对称的点的坐标是;故答案是.【点睛】本题主要考查了平面直角坐标系中点的对称性,掌握关于x轴对称的点的特征,准确计算是解题的关键.6、18或-18【分析】根据两个完全平方公式可得:这里首末两项是x和9的平方,那么中间项为加上或减去x和9的乘积的2倍,由此即可得出.【详解】解:∵是完全平方式,∴,解得:,故答案为:18或-18.【点睛】本题主要考查完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟练掌握运用完全平方公式是解题关键.7、65【分析】由平行线的性质先求解再利用角平分线的定义可得答案.【详解】解:,,CE平分,故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.8、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.9、y=6.80x【分析】首先根据题意可知加油过程中的变量为数量和金额,然后根据金额=数量×单价表示即可.【详解】∵加油过程中的变量为数量和金额,金额=数量×单价,,故答案为:.【点睛】本题主要考查函数关系,找到题中的变量是关键.10、【分析】这里首末两项是和5这两个数的平方,那么中间一项为加上或减去和5积的2倍.【详解】解:,,,故答案为:.【点睛】本题主要考查了完全平方公式的应用,解题的关键是两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.三、解答题1、问题情境:;问题迁移:(1);理由见解析;(2)当点在、两点之间时,;当点在射线上时,.【分析】问题情境:理由平行于同一条直线的两条直线平行得到PE∥AB∥CD,通过平行线性质来求∠APC;(1)过点P作,得到理由平行线的性质得到,,即可得到;(2)分情况讨论当点P在B、O两点之间,以及点P在射线AM上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB∥CD,PE∥AB,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1);过点P作,又因为,所以,则,,所以;(2)情况1:如图所示,当点P在B、O两点之间时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β,情况2:如图所示,点P在射线AM上时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要考查了借助辅助线构造平行线,利用平行线的性质进行推理,准确分析证明是解题的关键.2、AB∥DE,理由见解析.【分析】先求出BC=EF,再根据“边边边”证明△ABC与△DEF全等,根据全等三角形对应角相等可得∠B=∠E,然后根据内错角相等,两直线平行即可得证.【详解】解:∵BF=EC,∴BF+FC=EC+CF,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠E(全等三角形对应角相等),∴AB∥DE.【点睛】本题考查了全等三角形的判定与性质,平行线的判定,求出BC=EF,得到三角形全等是解题的关键.3、【分析】计算出数字的总共组合有几种,其中只有一种能打开,利用概率公式进行求解即可.【详解】因为密码由四个数字组成,如个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依此类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是.【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键,如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件A的概率.4、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.【详解】(1)证明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,FD=AC=BC,AD=C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年江西省国有资产监督管理委员会下属事业单位考试真题
- 湖南电力招聘考试真题2024
- 宝钢协力员工安全培训课件
- DB3716∕T 53-2023 住宅物业服务规范
- 山东裕隆智慧物流有限公司招聘笔试题库2025
- 2025二手车中介买卖合同样本
- 2025化工产品货物运输合同
- 2025股权转让代持合同
- 雅思考试常遇见的问题及答案
- 2025年劳务员之劳务员基础知识真题附答案
- (高清版)DG∕TJ 08-7-2021 建筑工程交通设计及停车库(场)设置标准
- 《优化教学策略:打造卓越课件的秘诀》课件
- 教师专业发展-课件
- 2025年数学新课标《义务教育数学课程标准(2025年版)》解读
- 网络分析仪企业ESG实践与创新战略研究报告
- 保险行业组织发展
- 管制部运行管理手册(机场)第六章 运行程序
- 药品临床综合评价解读
- 2025年中国人寿:养老险北京分公司招聘笔试参考题库含答案解析
- 2025年度建筑地基基础清包工劳务合同规范范本
- 逻辑思维在写作中的运用与提升
评论
0/150
提交评论