强化训练四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试试题(含答案解析)_第1页
强化训练四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试试题(含答案解析)_第2页
强化训练四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试试题(含答案解析)_第3页
强化训练四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试试题(含答案解析)_第4页
强化训练四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试试题(含答案解析)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川遂宁市射洪中学7年级数学下册第五章生活中的轴对称达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列四个图案中是轴对称图形的是()A. B.C. D.2、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是()A. B. C. D.3、如图,在中,,,是上一点,将沿折叠,使点落在边上的处,则等于()A. B. C. D.4、下列各图中不是轴对称图形的是()A. B.C. D.5、如图,直线、相交于点,为这两条直线外一点,连接.点关于直线、的对称点分别是点、.若,则点、之间的距离可能是()A. B. C. D.6、下列图案中是轴对称图形的是()A. B.C. D.7、下列四个图形中,不是轴对称图形的为()A. B. C. D.8、如图.点D,E分别在△ABC的边BC,AB上,连接AD、DE,将△ABC沿直线DE折叠后,点B与点A重合,已知AC=6cm,△ADC的周长为14cm,则线段BC的长为()A.6cm B.8cm C.12cm D.20cm9、下列在线学习平台的图标中,是轴对称图形的是()A. B. C. D.10、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是_____.2、如图,在ABC中,∠BAC=80°,∠C=45°,AD是ABC的角平分线,那么∠ADB=_____度.3、如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形.在图中最多能画出___个格点三角形与△ABC成轴对称.4、如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有_________种.5、如图所示,其中与甲成轴对称的图形是___________.6、如图,三角形纸片中,,,,沿过点的直线折叠这个三角形,使顶点落在边上的点处,折痕为,则的周长等于______.7、在一条可以折叠的数轴上,A,B表示的数分别是-16,9,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是_______.8、小强站在镜前,从镜中看到镜子对面墙上挂着的电子钟,则如图所示的电子钟的实际时刻是__________.9、如图,点D、

E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,∠EC=α,∠DB=β,且α<β,则∠A等于________(用含α、β表示).10、在如图所示的图中补一个小正方形,使其成为轴对称图形,共有__________种补法.三、解答题(6小题,每小题10分,共计60分)1、如图,将一张长方形纸片按如图方式折叠,猜想折痕EF,EG的位置关系,并说明理由.2、如图,已知线段a,求作以a为底、以为高的等腰三角形,这个等腰三角形有什么特征?3、如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)、B(﹣3,3)、C(﹣1,2).(1)作△ABC关于y轴对称的△A'B'C';(2)在x轴上找出点P,使PA+PC最小,在图中描出满足条件的P点(保留作图痕迹),并直接写出P点的坐标.4、在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,涂黑其中三个方格,使剩下的部分成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为涂黑部分)请在图中画出4种不同的设计方案,将每种方案中三个方格涂黑(每个3×3的正方形方格画一种,例图除外,并且画上对称轴)5、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.6、如图,已知线段a和b,直线AB和CD相交于点O.利用尺规(直尺、圆规),按下列要求作图:(1)在射线OA,OB,OC上作线段OA',OB',OC',使它们分别与线段a相等;(2)在射线OD上作线段OD',使OD'与线段b相等;(3)连接A'C',C'B',B'D',D'A';(4)你得到了一个怎样的图形?-参考答案-一、单选题1、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故答案为:D.【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、D【分析】根据轴对称图形的概念分别判断得出答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3、D【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.4、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B.【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、B【分析】由对称得OP1=OP=3.5,OP=OP2=3.5,再根据三角形任意两边之和大于第三边,即可得出结果.【详解】连接,,,如图:点关于直线,的对称点分别是点,,,,,,故选:.【点睛】本题考查线轴对称的性质以及三角形三边关系,解本题的关键熟练掌握对称性和三角形边长的关系.6、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐一判断即可.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误.故选:B.【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.7、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;对各选项依次进行判断即可.【详解】解:选项A是等腰梯形,是轴对称图形,不合题意;选项B是等腰三角形是轴对称图形,不合题意;选项C是旋转对称图图形,不是轴对称图形,符合题意;选项D正五边形是轴对称图形,不合题意;故选:C.【点睛】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8、B【分析】由折叠的性质得出BD=AD,由题意得出AD+DC=BD+DC=BC即可得出答案.【详解】解:∵△ABC沿直线DE折叠后,点B与点A重合,∴BD=AD,∵AC=6cm,△ADC的周长为14cm,∴AD+DC=14-6=8cm,∴BD+DC=BC=8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出AD=BD是解题关键.9、B【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【分析】将一个图形沿着一条直线翻折后,两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形,故选:C.【点睛】此题考查轴对称图形的定义,正确理解图形的特点是解题的关键.二、填空题1、5cm【分析】根据轴对称的性质得到PM=MP1,PN=NP2,然后等量代换可得△PMN的周长为P1P2.【详解】解:∵∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,∴OA、OB分别是P与P1和P与P2的对称轴∴PM=MP1,PN=NP2;∴P1M+MN+NP2=PM+MN+PN=P1P2=5cm,∴△PMN的周长为5cm.故填5cm.【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.2、【分析】根据角平分线的定义求得,进而根据三角形的外角性质即可求得的度数.【详解】∠BAC=80°,AD是ABC的角平分线,又∠C=45°故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键.3、6【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,以AB的中垂线为对称轴如图1,以BC边所在直线为对称轴如图2,以AB边所在三网格中间网格的垂直平分线为对称轴如图3,以BC边中垂线为对称轴,以3×3网格的对角线所在直线为对称轴如图5,图6,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.4、3【分析】根据轴对称图形的定义:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,做答即可.【详解】解:如图所示,根据轴对称图形的定义可知,选择一个小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置可以有以下3种可能:故答案为:3.【点睛】本题考查轴对称图形,解题的关键是熟知轴对称的概念.5、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.6、9【分析】根据折叠可得BE=BC=7,CD=DE,进而求出AE,将△AED的周长转化为AC+AE,求出结果即可.【详解】解:由折叠得,BE=BC=7,CD=DE,∴AE=AB﹣BE=10﹣7=3cm,∴△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm),故答案为:9.【点睛】考查折叠轴对称的性质,将三角形的周长转化为AC+AE是解决问题的关键.7、-3【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为−16,9,∴AB=9−(−16)=25,∵折叠后AB=1,∴BC==12,∵点C在B的左侧,∴C点表示的数为9-12=−3.故答案为:-3.【点睛】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.8、21:05【分析】由轴对称图形的性质进行分析即可得到正确答案.【详解】解:由轴对称图形的性质可知,电子钟的实际时刻的数字图与镜子中的数字图成轴对称图形,所以实际时刻是:故答案为:【点睛】本题考查轴对称图形的性质,牢记相关的知识点是解题的关键.9、【分析】根据翻转变换的性质得到,,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵,∴由折叠的性质可知,,,设,∵,∴,解得:,∴,,故答案为:.【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、4【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:故答案为:4【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.三、解答题1、EF⊥EG,理由见解析【分析】由EG、EF为折痕,∠BEG=,∠AEF=,再利用平角的定义可得:∠BEG++∠AEF+=180°,可证明∠GEF=90°,从而可得结论.【详解】解:EF⊥EG,理由如下:∵长方形纸片按如图的方式折叠,EG、EF为折痕,∴∠BEG=,∠AEF=,而∠BEG++∠AEF+=180°,∴,即∠GEF=90°.∴EF⊥EG.【点睛】本题考查的是轴对称的性质,平角的定义,垂直的定义,掌握“利用轴对称想性质得到相等的两个角”是解题的关键.2、见解析,这个等腰三角形是等腰直角三角形.【分析】作射线,在射线上截取,作线段的垂直平分线,交于,在射线上截取,连接,,即为所求.【详解】解:如图,即为所求.,,这个等腰三角形是等腰直角三角形.【点睛】本题考查作图复杂作图,等腰三角形的性质,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)见解析;(2)见解析,点P坐标为(﹣3,0)【分析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接可得;(2)作点A关于x轴的对称点,再连接交x轴于点P.【详解】(1)如图所示,即为所求;(2)如图所示,作点A关于x轴的对称点,再连接交x轴于点P,其点P坐标为(﹣3,0).【点睛】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题.4、见解析【分析】根据轴对称图形的定义求解即可.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.5、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,根据直角三角形的性质求出∠A,根据三角形的外角性质得到∠A′

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论