




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省芒市中考数学必背100题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A. B. C. D.2、关于的方程有两个不相等的实根、,若,则的最大值是(
)A.1 B. C. D.23、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()A.120° B.125° C.130° D.135°5、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(
)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x…-10123…y…30-1m3…①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(
)A.① B.② C.③ D.④2、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论中正确的结论是()A.△BO′A可以由△BOC绕点B逆时针旋转60°得到B.点O与O′的距离为4C.∠AOB=150°D.S四边形AOBO′=6+3E.S△AOC+S△AOB=6+3、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(
)A.1 B.3 C.5 D.74、关于x的一元二次方程(k-1)x2+4x+k-1=0有两个相等的实数根,则k的值为(
)A.1 B.0 C.3 D.-35、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(
)A.方程的解为,;B.当时,y随x的增大而增大;C.若关于x的方程有三个解,则;D.当时,函数的最大值为1.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、对任意实数a,b,定义一种运算:,若,则x的值为_________.2、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.3、在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a时,y有最大值7,最小值3,则a的取值范围是_____.4、菱形的一条对角线长为8,其边长是方程x2-8x+15=0的一个根,则该菱形的面积为________.5、如图,在平面直角坐标系中,等腰直角三角形OAB,∠A=90°,点O为坐标原点,点B在x轴上,点A的坐标是(1,1).若将△OAB绕点O顺时针方向依次旋转45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…则A2021的坐标是______.四、解答题(6小题,每小题10分,共计60分)1、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.2、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.3、用配方法解方程:.4、某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠.(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?5、已知的半径是.弦.求圆心到的距离;弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由.6、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动.当△AEF是以AF为底边的等腰三角形时,求点E运动的时间.-参考答案-一、单选题1、A【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率故选A.【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.2、D【解析】【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.【详解】解:由方程有两个不相等的实根、可得,,,∵,可得,,即化简得则故最大值为故选D【考点】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.3、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.4、B【解析】【分析】利用内心的性质得∠OBC=∠ABC,∠OCB=∠ACB,再根据三角形内角和计算出∠OBC+∠OCB=55°,然后再利用三角形内角和计算∠BOC的度数.【详解】解:∵O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故选:B.【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.5、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.二、多选题1、CD【解析】【分析】根据表格可知直线x=1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断①②③,根据与x轴交点坐标结合开口方向可判断④.【详解】解:从表格可以看出,函数的对称轴是直线x=1,顶点坐标为(1,﹣1),此时有最小值∴函数与x轴的交点为(0,0)、(2,0),∴抛物线y=ax2+bx+c的开口向上故①错误;抛物线y=ax2+bx+c的对称轴为直线x=1故②错误;方程ax2+bx+c=0的根为0和2故③正确;当y>0时,x的取值范围是x<0或x>2故④正确;故选CD.【考点】本题考查了二次函数的图象和性质.解题的关键在于根据表格获取正确的信息.2、ABCE【解析】【分析】证明可判断证明是等边三角形,可判断利用是等边三角形,证明可判断由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形,△BO′A可以由△BOC绕点B逆时针旋转60°得到,故符合题意;如图,连接,由是等边三角形,则点O与O′的距离为4,故符合题意;故符合题意;如图,过作于是等边三角形,S四边形AOBO′=故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得:故符合题意;故选:【考点】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.3、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.4、C【解析】【分析】由方程有两个相等的实数根,根据根的判别式可得到关于k的方程,则可求得k的值.【详解】解:∵关于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有两个相等的实数根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故选C.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.5、ABD【解析】【分析】根据题干定义求出y=(2x)※(x+1)的解析式,根据2x≥x+1及2x<x+1可得x≥1时y=2x2﹣2x,x<1时,y=﹣x2+1,进而求解.【详解】解:根据题意得:当2x≥x+1,即x≥1时,y=(2x)2﹣2x(x+1)=2x2﹣2x,当2x<x+1,即x<1时,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴当x≥1时,2x2﹣2x=0,解得x=0(舍去)或x=1,当x<1时,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正确,B、当x>1时,y=2x2﹣2x,抛物线开口向上,对称轴是直线x=,∴x>1时,y随x的增大而增大,∴B选项正确.当x≥1时,y=2x2﹣2x=2(x﹣)2﹣,∴x=1时,y取最小值为y=0,当x<1时,y=﹣x2+1=0,当x=0时,y取最大值为y=1,如图,当0<m<1时,方程(2x)※(x+1)=m有三个解,∴选项C错误,选项D正确.故答案为:ABD.【考点】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.三、填空题1、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.2、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.3、2≤a≤4.【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围.【详解】解:∵二次函数y=-x2+mx+3过点(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵当0≤x≤a时,y有最大值7,最小值3,∴2≤a≤4.故答案为:2≤a≤4.【考点】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.4、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.【详解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一条对角线长为8,∴菱形的边长为5,∵菱形的另一条对角线长=2×=6,∴菱形的面积=×6×8=24.故答案为:24.【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了菱形的性质.5、【解析】【分析】根据题意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此发现,旋转8次一个循环,再由,即可求解.【详解】解:根据题意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此发现,旋转8次一个循环,∵,∴A2021的坐标是.故答案为:【考点】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键.四、解答题1、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是元,就少卖件,用原来的210件去减得到销售量;当售价超过80元,超过80的部分是元,就少卖件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去得到最终的销售量.(2)根据利润=(售价-成本)销量,现在的单件利润是元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子.【详解】(1)当时,,即.当时,,即,则(2)由利润=(售价-成本)×销售量可以列出函数关系式为【考点】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上的取值范围.2、28°【解析】【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【详解】∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.【考点】本题考查了三角形的性质与圆的相关知识点,解题的关键是熟练的掌握三角形的性质与圆的认识.3、x1=+3,x2=﹣3.【解析】【分析】根据配方法,两边配上一次项系数一半的平方即可得到,然后利用直接开平方法求解.【详解】解:x2-2x=4,x2-2x+5=4+5,即(x-)2=9,∴x-=±3,∴x1=+3,x2=﹣3.【考点】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是解题关键.4、(1)z=﹣x+122(x≥168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版文化旅游景区店面租赁及旅游服务合同
- 2025版生态木结构设计与施工一体化服务合同
- 二零二五年大型商场能耗监测与节能管理服务合同
- 二零二五年度黄牛养殖与屠宰行业购销市场拓展合同
- 二零二五年度广告公司兼职策划人员聘用合同模板
- 二零二五年产业并购股权融资协议
- 二零二五年北京二手房交易定金确认协议
- 二零二五年度餐饮业品牌授权与加盟管理服务合同
- 2025版跨境电商平台存货质押融资合作协议
- 2025版教育信息化技术服务合作协议
- 国家电网公司供电企业劳动定员标准
- 7-聊城东制梁场80t龙门吊安拆安全专项方案-八局一-新建郑州至济南铁路(山东段)工程ZJTLSG-2标段
- 证据目录范本
- 中兴 ZXNOE 9700 系统介绍
- GB/T 21475-2008造船指示灯颜色
- 有理数加减混合运算练习题300道-
- 园林绿化工高级技师知识考试题库(附含答案)
- 安医大生殖医学课件04胚胎的培养
- 提高肠镜患者肠道准备合格率课件
- 灭火器每月定期检查及记录(卡)表
- 关于推荐评审高级工程师专业技术职务的推荐意见报告
评论
0/150
提交评论