强化训练京改版数学9年级上册期末试卷(综合卷)附答案详解_第1页
强化训练京改版数学9年级上册期末试卷(综合卷)附答案详解_第2页
强化训练京改版数学9年级上册期末试卷(综合卷)附答案详解_第3页
强化训练京改版数学9年级上册期末试卷(综合卷)附答案详解_第4页
强化训练京改版数学9年级上册期末试卷(综合卷)附答案详解_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、对于抛物线,下列说法正确的是()A.抛物线开口向上B.当时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)2、已知(a≠0,b≠0),下列变形正确的是()A. B. C.2a=3b D.3a=2b3、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()A. B. C. D.4、如图,将一张宽为2cm的长方形纸片沿AB折叠成如图所示的形状,那么折痕AB的长为(

)cmA. B. C.2 D.5、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.26、如图,正比例函数和反比例函数的图象在第一象限交于点且则的值为(

)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,已知等边三角形ABC的边长为2,DE是它的中位线.则下面四个结论中正确的有()A.DE=1 B.AB边上的高为C.△CDE∽△CAB D.△CDE的面积与△CAB面积之比为1:42、利用反例可以判断一个命题是错误的,下列命题错误的是(

)A.若,则 B.对角线相等的四边形是矩形C.函数的图象是中心对称图形 D.六边形的外角和大于五边形的外角和3、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA4、如图,△ABC中,D在AB上,E在AC上,下列条件中,不能判定DE∥BC的是(

).A. B.C. D.5、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(

)A.函数解析式为I= B.当R=9Ω时,I=4AC.蓄电池的电压是13V D.当I≤10A时,R≥3.6Ω6、下列命题中,不正确的是(

)A.三点可确定一个圆B.三角形的外心是三角形三边中线的交点C.一个三角形有且只有一个外接圆D.三角形的外心必在三角形的内部或外部7、如图,,AD与BC相交于点O,那么在下列比例式中,不正确的是(

)A. B.C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、二次函数的最小值为______.2、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.3、如图,在RT△ABC中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.4、二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________5、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.6、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.7、若抛物线的图像与轴有交点,那么的取值范围是________.四、解答题(6小题,每小题10分,共计60分)1、若二次函数图像经过,两点,求、的值.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?3、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.4、(1)计算:.(2)解方程:.5、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.6、定义:若一个三角形最长边是最短边的2倍,我们把这样的三角形叫做“和谐三角形”.在△ABC中,点F在边AC上,D是边BC上的一点,AB=BD,点A,D关于直线l对称,且直线l经过点F.(1)如图1,求作点F;(用直尺和圆规作图保留作图痕迹,不写作法)(2)如图2,△ABC是“和谐三角形”,三边长BC,AC,AB分别a,b,c,且满足下列两个条件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之间的等量关系;②若AE是△ABD的中线.求证:△ACE是“和谐三角形”.-参考答案-一、单选题1、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可.【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.2、C【解析】【分析】根据比例的性质“两内项之积等于两外项之积”对各选项分析判断即可得.【详解】解:A、∵,∴,∴,选项说法错误,不符合题意;B、∵,∴,∴,选项说法错误,不符合题意;C、∵,∴,选项说法正确,符合题意;D、∵,∴,选项说法错误,不符合题意;故选C.【考点】本题考查了比例的性质,解题的关键是熟记比例的性质.3、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论.【详解】解:由y=x2+k可知抛物线的开口向上,故B不合题意;∵二次函数y=x2+k与y轴交于负半轴,则k<0,∴﹣k>0,∴一次函数y=﹣kx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.4、A【解析】【分析】作点A作,交BC于点D,作点B作,交AC于点E,根据长方形纸条的宽得出,继而可证明是等边三角形,则有,然后在直角三角形中利用锐角三角函数即可求出AB的值.【详解】作点A作,交BC于点D,作点B作,交AC于点E,∵长方形的宽为2cm,,,.∴是等边三角形,故选:A.【考点】本题主要考查等边三角形的判定及性质,锐角三角函数,掌握等边三角形的判定及性质和特殊角的三角函数值是解题的关键.5、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.6、D【解析】【分析】根据点在直线正比例函数上,则它的坐标应满足直线的解析式,故点的坐标为.再进一步利用了勾股定理,求出点的坐标,根据待定系数法进一步求解.【详解】解:作轴于.设A点坐标为,在中,即,解得(舍去)、;∴点坐标为,将代入数得:.故选:.【考点】此题考查了正比例函数图象上点的坐标特征和用待定系数法求函数解析式,构造直角三角形求出点A坐标是解题关键,构思巧妙,难度不大.二、多选题1、ABCD【解析】【分析】根据图形,利用三角形中位线定理,可得DE=1,A成立;AB边上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,D也成立.【详解】解:∵DE是它的中位线,∴DE=AB=1,故A正确,∴DE∥AB,∴△CDE∽△CAB,故C正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正确,∵等边三角形的高=,故B正确.故选ABCD.【考点】本题利用了:1、三角形中位线的性质;2、相似三角形的判定:一条直线与三角形一边平行,则它所截得三角形与原三角形相似;3、相似三角形的面积等于对应边的比的平方;4、等边三角形的高=边长×sin60°.2、ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【考点】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.3、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.4、BCD【解析】【分析】利用各选项给定的条件,结合再证明,可得,逐一分析各选项,从而可得答案.【详解】解:A、而则故A不符合题意;B、与不一定相似,则与不一定相等,不一定平行,故B符合题意;C、,而而不一定相等,故不一定平行,故C符合题意;D、与不一定相似,则与不一定相等,不一定平行,故D符合题意;故选:BCD.【考点】本题考查的是相似三角形的判定与性质,平行线的判定,掌握两边对应成比例且夹角相等的两个三角形相似是解题的关键.5、BD【解析】【分析】设函数解析式为,将点(4,9)代入判断A错误;将R=9Ω代入判断B正确;由解析式判断C错误;由函数性质判断D正确.【详解】解:设函数解析式为,将点(4,9)代入,得,∴函数解析式为,故A错误;当R=9Ω时,I=4A,故B正确;蓄电池的电压是36V,故C错误;∵39>0,∴I随R的增大而减小,∴当I≤10A时,R≥3.6Ω,故D正确;故选:BD.【考点】此题考查了求反比例函数解析式,反比例函数的增减性,已知自变量求函数值的大小,正确掌握反比例函数的综合知识是解题的关键.6、ABD【解析】【分析】根据圆的性质定理逐项排查即可.【详解】解:A.不在同一条直线上的三点确定一个圆,故本选项错误;B.三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D.直角三角形的外心在斜边中点处,故本选项错误.故选:ABD.【考点】考查确定圆的条件以及三角形外接圆的知识,掌握三角形的外接圆是三条垂直平分线的交点是解题的关键.7、ABD【解析】【分析】先判断三角形相似,再根据相似三角形的对应边成比例,则可判断A、B、C的正确性,根据基本事实,一组平行线被两条直线所截的对应线段成比例,判断D的正确性.【详解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正确;故B不正确;故C正确;∵,∴即故D不正确;故选:ABD.【考点】本题考查了相似三角形的判定和相似三角形的性质以及基本事实的应用,根据性质找到对应的边成比例是解答此题的关键.三、填空题1、【解析】【分析】先将函数解析式化为顶点式,再根据函数的性质解答.【详解】解:,∵a=1>0,∴当x=-2时,二次函数有最小值-4,故答案为:-4.【考点】此题考查将二次函数一般式化为顶点式,函数的性质,熟练转化函数解析式的形式及掌握确定最值的方法是解题的关键.2、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.3、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.4、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.5、

或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案.【详解】∵抛物线的对称轴为,抛物线与x轴一个交点为(5,0)∴抛物线与x轴另一个交点为(-1,0)∴方程的解为:,由图像可知,不等式的解集为:或.故答案为:,;或.【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键.6、

【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项.【详解】y=﹣2(x﹣2)2变形为:y=﹣2x2+8x﹣8,所以二次项系数为﹣2;一次项系数为8;常数项为﹣8.故答案为﹣2,8,﹣8.【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值.7、【解析】【分析】由抛物线的图像与轴有交点可知,从而可求得的取值范围.【详解】解:∵抛物线的图像与轴有交点∴令,有,即该方程有实数根∴∴.故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键.四、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD边运动的时间为秒.∵t=9>8,∴t=9(舍去),∴当t=2秒时,PQ与⊙O相切.【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理.3、(1);(2)的值为,,.【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为①若点在原点右侧,如图1,则,即,解得:,;②若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,,.【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.4、(1)10;(2)无解.【解析】【分析】(1)原式利用绝对值的代数意义,特殊角三角函数值,二次根式性质,负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式;(2)去分母得:2+1−x=2x−6,解得:x=3,经检验x=3是增根,分式方程无解.【考点】此题考查了解分式方程以及实数的运算,熟记特殊角三角函数值,实数的运算法则以及分式方程的解法是解本题的关键.5、(1);(2);(3)【解析】【分析】(1)由抛物线的对称轴为直线,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标;(2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式;(3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含m的代数式表达出MN的长度,结合MN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论