强化训练四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评试卷(含答案详解版)_第1页
强化训练四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评试卷(含答案详解版)_第2页
强化训练四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评试卷(含答案详解版)_第3页
强化训练四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评试卷(含答案详解版)_第4页
强化训练四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评试卷(含答案详解版)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、三角形的外角和是()A.60° B.90° C.180° D.360°2、下列叙述正确的是()A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角3、下列长度的三条线段能组成三角形的是()A.348 B.4410 C.5610 D.56114、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180° B.210° C.360° D.270°5、下列所给的各组线段,能组成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,136、在△ABC中,若AB=3,BC=4,且周长为奇数,则第三边AC的长可以是()A.1 B.3 C.4 D.57、如图,AB∥CD,∠E+∠F=85°,则∠A+∠C=()A.85° B.105°C.115° D.95°8、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点,再在河的这一边选定点和,使,并在垂线上取两点、,使,再作出的垂线,使点、、在同一条直线上,因此证得,进而可得,即测得的长就是的长,则的理论依据是()A. B. C. D.9、已知:如图,∠BAD=∠CAE,AB=AD,∠B=∠D,则下列结论正确的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE10、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是()A.SSS B.SAS C.ASA D.AAS第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有:______.(填写序号,写出所有正确答案)2、如图,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一个条件是____.3、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.4、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,己知DE=4,AD=6,则BE的长为___.5、已知,如图,AB=AC,AD=AE,BE与CD相交于点P,则下列结论:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4对全等三角形;正确的是_____(请填写序号).6、如图,已知,,,则______°.7、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.8、如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为_____.9、已知:如图,AB=DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).10、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.三、解答题(6小题,每小题10分,共计60分)1、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.2、如图1,AM为△ABC的BC边的中线,点P为AM上一点,连接PB.(1)若P为线段AM的中点.①设△ABP的面积为S1,△ABC的面积为S,求的值;②已知AB=5,AC=3,设AP=x,求x的取值范围.(2)如图2,若AC=BP,求证:∠BPM=∠CAM.3、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)当直线MN绕点C旋转到图①的位置时,易证△ADC≌△CEB(不需要证明),进而得到DE、AD、BE之间的数量关系为.(探究)(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN绕点C旋转到图③的位置时,直接写出DE、AD、BE之间的数量关系.5、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上).证明:由作图可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)这种作一个角等于已知角的方法依据是.(填序号)①AAS;②ASA;③SSS;④SAS6、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.(1)求证:△BDE≌△CDF;(2)求证:AE=AF.-参考答案-一、单选题1、D【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.2、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.3、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.4、B【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.5、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.6、C【分析】先求解的取值范围,再利用周长为奇数,可得为偶数,从而可得答案.【详解】解:AB=3,BC=4,即△ABC周长为奇数,而为偶数,或或不符合题意,符合题意;故选C【点睛】本题考查的是三角形三边的关系,掌握“三角形的任意两边之和大于第三边,任意两边之差小于第三边”是解本题的关键.7、D【分析】设交于点,过点作,根据平行线的性质可得,根据三角形的外角性质可得,进而即可求得【详解】解:设交于点,过点作,如图,∵∴∠E+∠F=85°故选D【点睛】本题考查了平行线的性质,三角形的外角性质,平角的定义,掌握三角形的外角性质是解题的关键.8、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵,,∴,在和中,,∴(ASA),∴;故选C.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.9、D【分析】根据已知条件利用ASA证明可得AC=AE,BC=DE,进而逐一进行判断.【详解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C选项错误;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A选项错误;D选项正确.故选:D.【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.10、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.【详解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.二、填空题1、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.2、AB=AD(答案不唯一)【分析】根据SAS即可证明△ABC≌△ADC.【详解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案为:AB=AD(答案不唯一).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.3、5【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.4、2【分析】根据AAS证明△ACD≌△CBE,再利用其性质解答即可.【详解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD与△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE−DE=AD−DE=6−4=2.故答案为:2.【点睛】本题考查三角形全等的判定和性质,要根据AAS证明△ACD≌△CBE是解题的关键.5、①②④【分析】先证△AEB≌△ADC(SAS),再证△EPC≌△DPB(AAS),可判断①;可证△APC≌△APB(SSS),判定断②;利用特殊等腰三角形可得可判断③,根据全等三角形个数可判断④即可【详解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正确;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正确;当AP=PB时,∠PAB=∠B,当AP≠PB时,∠PAB≠∠B,故③不正确;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4对全等三角形,故④正确故答案为:①②④【点睛】本题考查三角形全等判定与性质,掌握全等三角形的判定方法与性质是解题关键.6、59【分析】如图,过作证明证明再利用三角形的外角的性质求解从而可得答案.【详解】解:如图,过作,而,,故答案为:【点睛】本题考查的是平行线的性质,平行公理的应用,三角形的外角的性质,过作再证明是解本题的关键.7、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.8、4【分析】根据题意过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论.【详解】解:如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四边形PMCN是矩形,∴四边形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周长=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=•BC•AC=(AC+BC+AB)•PM,∴PM=2,∴△ECF的周长为4,故答案为:4.【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问.9、AC=DC【分析】由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.【详解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC与△DBC中,,∴△ABC≌△DBC(SSS),故答案为:AC=DC.【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.10、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.三、解答题1、见解析【分析】先由BF=CE说明BC=EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.【详解】证明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.2、(1)①,②;(2)证明见解析【分析】(1)①由中线定义即可得,故②过C点作AB平行线,过B点作AC平行线,相交于点N,连接ME,可得,AB=CE,则在中,有两边之和大于第三边,两边之和小于第三边,即可求出AE的取值范围,即,又因为P为线段AM,故.(2)延长PM到点D使PM=DM,连接DC,由边角边可证明,则对应边BP=CD相等,由等角对等边即可求得∠BPM=∠CDM,同理可得∠CAM=∠CDM,所以∠BPM=∠CAM.【详解】(1)①由AM为△ABC的BC边的中线可知由P为线段AM的中点可知则,故②过C点作AB平行线,过B点作AC平行线,相交于点N,连接ME∵AB//CE∴∠ABC=∠BCE,∠BAE=∠AEC,BM=MC∴(AAS)∴AB=CE在中有即得即∵P为线段AM的中点∴AM=2AP,∴即.(2)延长PM到点D使PM=DM,连接DC,∵PM=DM,∠BMP=∠CMD,BM=CM∴(SAS)∴BP=CD,∠BPM=∠CDM又∵AC=BP∴AC=CD∴∠CAM=∠CDM∴∠BPM=∠CAM【点睛】本题考查了三角形的综合问题,其中三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题;三角形三边的关系:任意两边的和都大于第三边;任意两边之和都要小于第三边等性质是解题的关键.3、见解析【分析】利用AAS即可证明△ABO≌△EDO.【详解】证明:∵AB⊥BE,DE⊥AD,∴∠B=∠D=90°.在△ABO和△EDO中,∴△ABO≌△EDO.【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.4、(1)DE=AD+BE;(2)见解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)与(1)(2)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【详解】解:(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)证明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论