




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省德令哈市中考数学高分题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()A. B.π﹣2 C.1+ D.1﹣2、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()A. B. C. D.3、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()A.5 B.4.5 C.4 D.04、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()A. B. C. D.5、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,下列结论正确的是(
)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是抛物线上两点,且y1>y2,则﹣6<m<42、已知二次函数y=x2-4x+a,下列说法正确的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≥-4C.当a=3时,不等式x2-4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-33、已知关于的方程,下列说法不正确的是(
)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根4、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形5、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()A.b2﹣4ac<0B.当x>﹣1时,y随x增大而减小C.a+b+c<0D.若方程ax2+bx+c-m=0没有实数根,则m>2E.3a+c<0第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是________.2、如图,四边形内接于,若,则_______°.3、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.4、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).5、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.四、解答题(6小题,每小题10分,共计60分)1、一个二次函数y=(k﹣1).求k值.2、已知m是方程的一个根,试求的值.3、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.4、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰.已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值.5、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.6、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).-参考答案-一、单选题1、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=.故选:B.【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.2、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】∵的对称轴为直线,∴,∴,∴一元二次方程的实数根可以看做与函数的有交点,∵方程在的范围内有实数根,当时,,当时,,函数在时有最小值2,∴,故选A.【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.3、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个∴直线与圆相交∴d<半径=4故选D.【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.4、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可.【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,∵AB、BC与⊙O相切于点A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四边形OABC是正方形,∴OA=AB=BC=OC=0.8m,故选:C.【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质.5、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.二、多选题1、ABD【解析】【分析】根据题意可得点A(﹣4,0)关于对称轴的对称点,从而得到当时,,再由,可得在对称轴右侧随的增大而增大,从而得到当时,;根据图象可得,,可得;再由,可得;然后根据P(﹣6,y1)关于对称轴的对称点,可得当y1>y2时,﹣6<m<4,即可求解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,∴点A(﹣4,0)关于对称轴的对称点,即当时,,∵抛物线开口向上,∴,∴在对称轴右侧随的增大而增大,∴当时,,故A正确;∵抛物线与交于负半轴,∴,∵对称轴为直线x=﹣1,,∴,即,∴,故B正确;∵,∴,故C错误;∵P(﹣6,y1)关于对称轴的对称点,∴当y1>y2时,﹣6<m<4,故D正确.故选:ABD【考点】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键.2、ACD【解析】【分析】A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.【详解】解:∵y=x2−4x+a,∴对称轴:直线x=2,A、当x<1时,y随x的增大而减小,故该选项正确;B、当Δ=b2−4ac=16−4a≥0,即a≤4时,二次函数和x轴有交点,该选项错误;C、当a=3时,则不等式x2−4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故该选项正确;D、y=x2−4x+a配方后是y=(x−2)2+a−4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x-1)2+a−3,把(1,−2)代入函数解析式,易求a=−3,故该选项正确.故选:ACD.【考点】本题考查了二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律.3、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.4、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.5、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断.【详解】∵二次函数与x轴有两个交点,∴b²-4ac>0,故A错误,观察图象可知:当x>-1时,y随x增大而减小,故B正确,∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故C正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax²+bx+c-m=0没有实数根,故D正确,∵对称轴x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正确,故答案为BCDE.【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、填空题1、【解析】【分析】连接CE,如图,利用平行线的性质得∠COE=∠EOB=90°,再利用勾股定理计算出OE=,利用余弦的定义得到∠OCE=60°,然后根据扇形面积公式,利用S阴影部分=S扇形BCE−S△OCE−S扇形BOD进行计算即可.【详解】解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S阴影部分=S扇形BCE−S△OCE−S扇形BOD=,故答案为.【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.2、104【解析】【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案为:104.【考点】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.3、【解析】【分析】利用根的判别式,建立关于m的方程求得m的值.【详解】关于x的一元二次方程的根的判别式的值为4,∵,,,,解得.故答案为:.【考点】本题考查了一元二次方程(a≠0)的根的判别式.4、①②④【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,,即可判断③.【详解】解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴,即,故②正确;∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,,∴即,故③错误,故答案为:①②④.【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.5、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.四、解答题1、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数可得k2-3k+4=2,且k-1≠0,再解即可.【详解】由题意得:k2﹣3k+4=2,且k﹣1≠0,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件.2、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算.【详解】解:∵m是方程的一个根,代入即得.∴或.∴.【考点】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.3、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图中,由题意点在上运动的时间与点在上运动的时间相等,即.当时,当时,当时,分别构建方程求解即可.②如图中,作于.首先证明,根据构建方程即可解决问题.【详解】解:(1)如图中,当时,点与点都在上运动,,,,,,,,,,.此时两平行线截平行四边形的面积为.如图中,当时,点在上运动,点仍在上运动.则,,,,,,,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动.则,,,.此时两平行线截平行四边形的面积为.故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,∴当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,.当时,,则有,解得,当时,则有,解得,当时,,则有,解得.如图中,作于.在Rt△CHR中,,,,,,,四边形是平行四边形,,四边形是矩形,,当时,则有,解得,综上所述,满足条件的m的值为或或或.【考点】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.4、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论.【详解】解:(1)由题意得,,解得,故的取值范围为且为整数;(2)的取值范围为.理由如下:,当时,,,,解得:或.要使,得;,;(3)设捐款后每天的利润为元,则,对称轴为,,,抛物线开口向下,当时,随的增大而增大,当时,最大,,解得.【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中地理国培培训心得交流
- 2025年数字电视广播发射机项目提案报告模范
- 清障救援安全知识培训课件
- 青年教师培训发展方案
- 直播电商选品市集创新创业项目商业计划书
- 矿山信息化效果评估创新创业项目商业计划书
- 橡胶管道安装机器人创新创业项目商业计划书
- 淡水鱼苗基因编辑育种技术创新创业项目商业计划书
- 工业发酵车间全流程设计与运营管理
- 2025年电力电子元器件项目规划申请报告
- 2025年妊娠期糖尿病护理查房记录模板范文
- 2025年传动部件行业当前发展趋势与投资机遇洞察报告
- 2025-2030中国海水淡化技术经济性分析与政策补贴机制报告
- 学校学生一日常规管理细则(2025年修订)
- 【语文】小学四年级下册期末质量模拟试题测试卷
- 2025年甘南事业单位考试笔试试题
- 山东护士招聘考试题库及答案
- 2025-2026学年高一上学期开学第一课主题班会课件
- 湖北省襄阳市枣阳市2024-2025学年七年级下学期期末考试英语试卷(含答案无听力部分)
- 存量贷款管理办法
- 产品供货方案及按时供货保证措施
评论
0/150
提交评论