河北师大附中7年级数学下册第五章生活中的轴对称章节练习练习题(解析版)_第1页
河北师大附中7年级数学下册第五章生活中的轴对称章节练习练习题(解析版)_第2页
河北师大附中7年级数学下册第五章生活中的轴对称章节练习练习题(解析版)_第3页
河北师大附中7年级数学下册第五章生活中的轴对称章节练习练习题(解析版)_第4页
河北师大附中7年级数学下册第五章生活中的轴对称章节练习练习题(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北师大附中7年级数学下册第五章生活中的轴对称章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列图形中,不一定是轴对称图形的是()A.直角三角形 B.等腰三角形 C.等边三角形 D.正方形2、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是()A. B. C. D.3、如图,下列图形中,轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个4、如图,点D是∠FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且△CDE周长的最小值是2时,∠FAB的度数是()A.30° B.45° C.60° D.90°5、下列垃圾分类的标识中,是轴对称图形的是()A.①② B.③④ C.①③ D.②④6、下列图案中,有且只有三条对称轴的是()A. B. C. D.7、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是()A. B. C. D.8、下列几种著名的数学曲线中,不是轴对称图形的是()A.笛卡尔爱心曲线 B.蝴蝶曲线C.费马螺线曲线 D.科赫曲线9、在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.吉 B.祥 C.如 D.意10、如图,下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,三角形纸片中,,,,沿过点的直线折叠这个三角形,使顶点落在边上的点处,折痕为,则的周长等于______.2、如图,在网格中与ABC成轴对称的格点三角形一共有___个.3、如图,在长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,动点M在线段AC上运动(不与端点重合),点M关于边AD,DC的对称点分别为M1,M2,连接M1M2,点D在M1M2上,则在点M的运动过程中,线段M1M2长度的最小值是_______.4、如图,腰长为22的等腰ABC中,顶角∠A=45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_______.5、如图,在中,是中线,是角平分线,是高.填空:(1)___________;(2)____________;(3)______;(4)______.6、如果一个图形沿一条直线________,直线两旁的部分能够________,这个图形就叫做____;这条直线就是它的________.7、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕.若与重合,则∠EBD为______度.8、如图①,在长方形ABCD中,E点在AD上,并且∠AEB=60°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=10°,则∠DEC的度数为___度.9、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.10、如图,点D、

E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,∠EC=α,∠DB=β,且α<β,则∠A等于________(用含α、β表示).三、解答题(6小题,每小题10分,共计60分)1、如图,小强拿一张正方形的纸片(图①),将其沿虚线对折一次得图②,再沿图②中的虚线对折得图③,然后用剪刀沿图③中的虚线剪去一个角再打开,请你画出打开后的几何图形.2、如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.3、如图,是的角平分线,,交于点E,,交于点F.图中与有什么关系?为什么?4、如图的的正方形网格中,的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与成轴对称的格点三角形一共有__个,请在图中至少画一个满足题意的图形.(请画在答题纸的图形上)5、如图,在的正方形网格中,每个小正方形的边长都为1,网格中有一个格点(即三角形的顶点都在格点上).在图中作出关于直线l对称的(要求:A与,B与,C与相对应).6、ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.-参考答案-一、单选题1、A【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.2、D【分析】根据轴对称图形的概念分别判断得出答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;∴轴对称图形有2个,故选B.【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义.4、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时△CDE周长最小为DC′+DE′+C′E′=GH=2,可得△AGH是等边三角形,进而可得∠FAB的度数.【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,连接DC′,DE′,此时△CDE周长最小为DC′+DE′+C′E′=GH=2,根据轴对称的性质,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等边三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故选:A.【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.5、B【详解】解:图③和④是轴对称图形,故选:B.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.6、D【详解】解:A、不是轴对称图形,故不符合题意;B、有四条对称轴,故不符合题意;C、不是轴对称图形,故不符合题意;D、有三条对称轴,故符合题意.故选:D.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.7、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.8、C【分析】根据轴对称图形的概念(平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)求解.【详解】解:A、是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念,深刻理解轴对称图形的概念是解题关键9、A【分析】根据轴对称的定义去判断即可.【详解】∵吉是轴对称图形,∴A符合题意;∵祥不是轴对称图形,∴B不符合题意;∵如不是轴对称图形,∴C不符合题意;∵意不是轴对称图形,∴D不符合题意;故选A.【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键.10、B【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.二、填空题1、9【分析】根据折叠可得BE=BC=7,CD=DE,进而求出AE,将△AED的周长转化为AC+AE,求出结果即可.【详解】解:由折叠得,BE=BC=7,CD=DE,∴AE=AB﹣BE=10﹣7=3cm,∴△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm),故答案为:9.【点睛】考查折叠轴对称的性质,将三角形的周长转化为AC+AE是解决问题的关键.2、4【分析】直接利用轴对称图形的性质结合题意即可得出答案.【详解】解:如图所示:都是符合题意的图形.故在网格中与ABC成轴对称的格点三角形一共有4个,故答案为:4.【点睛】此题主要考查了轴对称的性质,正确掌握轴对称图形的性质是解题关键.3、【分析】过D作于,连接,根据题意可得,从而可以判定M1M2最小值为,即可求解.【详解】解:过D作于,连接,如图:长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M关于边AD,DC的对称点分别为M1,M2,∴DM1=DM=DM2,∴,线段M1M2长度最小即是DM长度最小,此时DM⊥AC,即M与重合,M1M2最小值为.故答案为:.【点睛】此题考查了轴对称的性质,掌握轴对称的有关性质将的最小值转化为的最小值是解题的关键.4、或2【分析】分两种情况:当CE⊥AB时,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,证明△BCM≌△DCM,得到BM=DM,证明△MDE是等腰直角三角形,即可得解;当CE⊥AC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CE⊥AB时,如图,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,顶角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折叠得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,设DM=x,则BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;当CE⊥AC时,如图,∴∠ACE=90°,由折叠得:∠ACD=∠DCE=45°,∵等腰△ABC中,顶角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即点D、E都在直线AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),综上,BD的长为或2.故答案为:或2.【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键.5、##【分析】根据三角形中线的定义、角平分线的定义及三角形的高可直接求解各个小问.【详解】解:(1)∵是中线,∴;故答案为,;(2)∵是角平分线,∴,故答案为,;(3)∵是高,∴,故答案为;(4)由题意得:;故答案为.【点睛】本题主要考查三角形的中线、角平分线及高线,熟练掌握三角形的中线、角平分线及高线的定义是解题的关键.6、折叠互相重合轴对称图形对称轴【分析】根据轴对称图形的概念直接填空即可.【详解】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.故答案为:折叠,互相重合,轴对称图形,对称轴.【点睛】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,解题关键是熟记定义.7、90【分析】根据折叠的性质和平角的定义即可得到结论.【详解】解:由折叠可知,∠ABE=∠A'BE=∠ABA′,∠CBD=∠C'BD=∠CBC′,∴∠DBE=∠A'BE+∠C'BD=∠ABA′+∠CBC′=(∠ABA'+∠CBC')=×180°=90°.故答案为:90.【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8、35【分析】由折叠可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,进而可得答案.【详解】解:由折叠可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案为:35.【点睛】本题考查角的和差关系,轴对称的性质,根据折叠的性质得到BE平分,CE平分是解本题关键.9、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.10、【分析】根据翻转变换的性质得到,,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵,∴由折叠的性质可知,,,设,∵,∴,解得:,∴,,故答案为:.【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题1、见解析.【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【详解】解:如图所示:【点睛】本题考查剪纸问题,对于此类问题,只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力.2、(1)见解析;(2)见解析;(3)见解析.【分析】(1)画线段AB关于大的正方形的对角线对称的线段MN即可;(2)画线段AC关于大的正方形的对角线对称的线段PQ即可;(3)分别确定关于大正方形的对角线的对称点,再顺次连接即可.【详解】解:(1)如图①所示,线段MN是所求作的线段,(2)如图②所示,线段PQ是所求作的线段,(3)如图③所示,是所求作的三角形,【点睛】本题考查的是轴对称的性质与作图,轴对称图案的设计,掌握“先确定好对称轴再画图”是解题的关键.3、相等,理由见解析【分析】先根据角平分线的定义得出,再由平行线的性质即可得出结论.【详解】解:相等.理由:∵是的角平分线,∴,∵,∴,∵,∴∴.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.4、4,画图见解析【分析】根据网格的特点,以及轴对称图形的特点作图即可.【详解】解:如图所示:都是符合题意的图形.故在网格中与成轴对称的格点三角形一共有4个,故答案为:4.【点睛】本题考查了画轴对称图形,找到对称轴是解题的关键.5、见解析【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论